IMGDroid: Detecting Image Loading Defects in Android Applications

Wei Song, Mengqi Han, Jeff Huang
{"title":"IMGDroid: Detecting Image Loading Defects in Android Applications","authors":"Wei Song, Mengqi Han, Jeff Huang","doi":"10.1109/ICSE43902.2021.00080","DOIUrl":null,"url":null,"abstract":"Images are essential for many Android applications or apps. Although images play a critical role in app functionalities and user experience, inefficient or improper image loading and displaying operations may severely impact the app performance and quality. Additionally, since these image loading defects may not be manifested by immediate failures, e.g., app crashes, existing GUI testing approaches cannot detect them effectively. In this paper, we identify five anti-patterns of such image loading defects, including image passing by intent, image decoding without resizing, local image loading without permission, repeated decoding without caching, and image decoding in UI thread. Based on these anti-patterns, we propose a static analysis technique, IMGDroid, to automatically and effectively detect such defects. We have applied IMGDroid to a benchmark of 21 open-source Android apps, and found that it not only successfully detects the 45 previously-known image loading defects but also finds 15 new such defects. Our empirical study on 1,000 commercial Android apps demonstrates that the image loading defects are prevalent.","PeriodicalId":305167,"journal":{"name":"2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE43902.2021.00080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Images are essential for many Android applications or apps. Although images play a critical role in app functionalities and user experience, inefficient or improper image loading and displaying operations may severely impact the app performance and quality. Additionally, since these image loading defects may not be manifested by immediate failures, e.g., app crashes, existing GUI testing approaches cannot detect them effectively. In this paper, we identify five anti-patterns of such image loading defects, including image passing by intent, image decoding without resizing, local image loading without permission, repeated decoding without caching, and image decoding in UI thread. Based on these anti-patterns, we propose a static analysis technique, IMGDroid, to automatically and effectively detect such defects. We have applied IMGDroid to a benchmark of 21 open-source Android apps, and found that it not only successfully detects the 45 previously-known image loading defects but also finds 15 new such defects. Our empirical study on 1,000 commercial Android apps demonstrates that the image loading defects are prevalent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IMGDroid:检测图像加载缺陷在Android应用程序
对于许多Android应用程序或应用程序来说,图像是必不可少的。虽然图片在应用程序的功能和用户体验中起着至关重要的作用,但低效或不当的图片加载和显示操作可能会严重影响应用程序的性能和质量。此外,由于这些图像加载缺陷可能不会立即出现故障,例如应用程序崩溃,现有的GUI测试方法无法有效地检测到它们。在本文中,我们识别了五种图像加载缺陷的反模式,包括故意传递图像、不调整大小的图像解码、未经许可的本地图像加载、不缓存的重复解码和UI线程中的图像解码。基于这些反模式,我们提出了一种静态分析技术——IMGDroid来自动有效地检测这些缺陷。我们将IMGDroid应用于21个开源Android应用程序的基准测试,发现它不仅成功检测到45个已知的图像加载缺陷,而且还发现了15个新的此类缺陷。我们对1000个商业Android应用的实证研究表明,图像加载缺陷普遍存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MuDelta: Delta-Oriented Mutation Testing at Commit Time Verifying Determinism in Sequential Programs Data-Oriented Differential Testing of Object-Relational Mapping Systems IoT Bugs and Development Challenges Onboarding vs. Diversity, Productivity and Quality — Empirical Study of the OpenStack Ecosystem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1