Approximate Counting of k-Paths: Simpler, Deterministic, and in Polynomial Space

D. Lokshtanov, Andreas Björklund, Saket Saurabh, M. Zehavi
{"title":"Approximate Counting of k-Paths: Simpler, Deterministic, and in Polynomial Space","authors":"D. Lokshtanov, Andreas Björklund, Saket Saurabh, M. Zehavi","doi":"10.1145/3461477","DOIUrl":null,"url":null,"abstract":"Recently, Brand et al. [STOC 2018] gave a randomized mathcal O(4kmε-2-time exponential-space algorithm to approximately compute the number of paths on k vertices in a graph G up to a multiplicative error of 1 ± ε based on exterior algebra. Prior to our work, this has been the state-of-the-art. In this article, we revisit the algorithm by Alon and Gutner [IWPEC 2009, TALG 2010], and obtain the following results: • We present a deterministic 4k+ O(√k(log k+log2ε-1))m-time polynomial-space algorithm. This matches the running time of the best known deterministic polynomial-space algorithm for deciding whether a given graph G has a path on k vertices. • Additionally, we present a randomized 4k+mathcal O(logk(logk+logε-1))m-time polynomial-space algorithm. Our algorithm is simple—we only make elementary use of the probabilistic method. Here, n and m are the number of vertices and the number of edges, respectively. Additionally, our approach extends to approximate counting of other patterns of small size (such as q-dimensional p-matchings).","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3461477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Recently, Brand et al. [STOC 2018] gave a randomized mathcal O(4kmε-2-time exponential-space algorithm to approximately compute the number of paths on k vertices in a graph G up to a multiplicative error of 1 ± ε based on exterior algebra. Prior to our work, this has been the state-of-the-art. In this article, we revisit the algorithm by Alon and Gutner [IWPEC 2009, TALG 2010], and obtain the following results: • We present a deterministic 4k+ O(√k(log k+log2ε-1))m-time polynomial-space algorithm. This matches the running time of the best known deterministic polynomial-space algorithm for deciding whether a given graph G has a path on k vertices. • Additionally, we present a randomized 4k+mathcal O(logk(logk+logε-1))m-time polynomial-space algorithm. Our algorithm is simple—we only make elementary use of the probabilistic method. Here, n and m are the number of vertices and the number of edges, respectively. Additionally, our approach extends to approximate counting of other patterns of small size (such as q-dimensional p-matchings).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
k-路径的近似计数:更简单的,确定性的,在多项式空间
最近,Brand等人[STOC 2018]给出了一种随机数学O(4kmε-2次指数空间算法,用于基于外部代数近似计算图G中k个顶点上的路径数,乘法误差为1±ε。在我们工作之前,这是最先进的。在本文中,我们回顾了Alon和Gutner [IWPEC 2009, TALG 2010]的算法,并获得了以下结果:•我们提出了一个确定性的4k+ O(√k(log k+log2ε-1))m-时间多项式空间算法。这与决定给定图G是否在k个顶点上有路径的最著名的确定性多项式空间算法的运行时间相匹配。•此外,我们提出了一个随机的4k+数学O(logk(logk+logε-1))m时间多项式空间算法。我们的算法很简单,我们只是简单地使用了概率方法。这里,n和m分别是顶点数和边数。此外,我们的方法扩展到其他小尺寸模式的近似计数(例如q维p匹配)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generic Techniques for Building Top-k Structures Deterministic Leader Election in Anonymous Radio Networks A Learned Approach to Design Compressed Rank/Select Data Structures k-apices of Minor-closed Graph Classes. II. Parameterized Algorithms Fully Dynamic (Δ +1)-Coloring in O(1) Update Time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1