Unsupervised data analysis for virus detection with a surface plasmon resonance sensor

Dominic Siedhoff, M. Strauch, V. Shpacovitch, D. Merhof
{"title":"Unsupervised data analysis for virus detection with a surface plasmon resonance sensor","authors":"Dominic Siedhoff, M. Strauch, V. Shpacovitch, D. Merhof","doi":"10.1109/IPTA.2017.8310145","DOIUrl":null,"url":null,"abstract":"We propose an unsupervised approach for virus detection with a biosensor based on surface plasmon resonance. A column-based non-negative matrix factorisation (NNCX) serves to select virus candidate time series from the spatio-temporal data. The candidates are then separated into true virus adhesions and false positive NNCX responses by fitting a constrained virus model function. In the evaluation on ground truth data, our unsupervised approach compares favourably to a previously published supervised approach that requires more parameters.","PeriodicalId":316356,"journal":{"name":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2017.8310145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We propose an unsupervised approach for virus detection with a biosensor based on surface plasmon resonance. A column-based non-negative matrix factorisation (NNCX) serves to select virus candidate time series from the spatio-temporal data. The candidates are then separated into true virus adhesions and false positive NNCX responses by fitting a constrained virus model function. In the evaluation on ground truth data, our unsupervised approach compares favourably to a previously published supervised approach that requires more parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用表面等离子体共振传感器检测病毒的无监督数据分析
我们提出了一种基于表面等离子体共振的生物传感器的无监督病毒检测方法。基于列的非负矩阵分解(NNCX)从时空数据中选择候选病毒时间序列。然后通过拟合约束病毒模型函数将候选病毒分为真病毒粘附和假阳性NNCX反应。在对地面真实数据的评估中,我们的无监督方法优于先前发表的需要更多参数的监督方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated quantification of retinal vessel morphometry in the UK biobank cohort Deep learning for automatic sale receipt understanding Illumination-robust multispectral demosaicing Completed local structure patterns on three orthogonal planes for dynamic texture recognition Single object tracking using offline trained deep regression networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1