Design consideration of efficinecy improvement in three phase dual active bridge converter for LVDC application

Hyun-Jun Choi, Jun-Young Lee, Young-pyo Cho, Jeehoon Jung
{"title":"Design consideration of efficinecy improvement in three phase dual active bridge converter for LVDC application","authors":"Hyun-Jun Choi, Jun-Young Lee, Young-pyo Cho, Jeehoon Jung","doi":"10.1109/INTLEC.2017.8214194","DOIUrl":null,"url":null,"abstract":"To increase the efficiency of the three-phase dual active bridge (DAB) converter for low voltage direct current (LVDC) system, the design consideration based on performance analysis is proposed. The three phase DAB converters are widely used in high-power applications requiring bidirectional power conversion. This is because the three phase DAB converter has not only capability of zero voltage switching (ZVS), but also a lower conduction loss than a single-phase DAB converter. However, for high voltage/high power applications such as LVDC system, IGBTs are mostly used as active components, fading the one of merits of 3-phase DAB converters, ZVS, causing high switching losses. In addition, in a 3-phase DAB converter, the conduction losses increase due to the high circulating current under high load conditions. In this paper, the effective design consideration of coupling inductance is proposed based on the operation principle of the three phase DAB converter. By designing the coupling inductance, the IGBT turn-off current and the phase RMS current can be reduced to overcome the above disadvantages. Experimental results demonstrate the practical feasibility and the effectiveness of the proposed design method of three phase DAB converter through the 5 kW prototype.","PeriodicalId":366207,"journal":{"name":"2017 IEEE International Telecommunications Energy Conference (INTELEC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Telecommunications Energy Conference (INTELEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTLEC.2017.8214194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

To increase the efficiency of the three-phase dual active bridge (DAB) converter for low voltage direct current (LVDC) system, the design consideration based on performance analysis is proposed. The three phase DAB converters are widely used in high-power applications requiring bidirectional power conversion. This is because the three phase DAB converter has not only capability of zero voltage switching (ZVS), but also a lower conduction loss than a single-phase DAB converter. However, for high voltage/high power applications such as LVDC system, IGBTs are mostly used as active components, fading the one of merits of 3-phase DAB converters, ZVS, causing high switching losses. In addition, in a 3-phase DAB converter, the conduction losses increase due to the high circulating current under high load conditions. In this paper, the effective design consideration of coupling inductance is proposed based on the operation principle of the three phase DAB converter. By designing the coupling inductance, the IGBT turn-off current and the phase RMS current can be reduced to overcome the above disadvantages. Experimental results demonstrate the practical feasibility and the effectiveness of the proposed design method of three phase DAB converter through the 5 kW prototype.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LVDC用三相双有源桥式变换器效率提高的设计考虑
为了提高低压直流(LVDC)系统中三相双有源桥(DAB)变换器的效率,提出了基于性能分析的设计思路。三相DAB变换器广泛应用于需要双向功率转换的大功率应用中。这是因为三相DAB变换器不仅具有零电压开关(ZVS)的能力,而且比单相DAB变换器具有更低的导通损耗。然而,对于高压/大功率应用,如LVDC系统,igbt大多用作有源元件,削弱了三相DAB变换器ZVS的优点之一,导致高开关损耗。此外,在三相DAB变换器中,由于高负载条件下的大循环电流,导通损耗增加。本文根据三相DAB变换器的工作原理,提出了耦合电感的有效设计考虑。通过设计耦合电感,可以减小IGBT的关断电流和相位均方根电流,克服上述缺点。实验结果通过5kw样机验证了所提出的三相DAB变换器设计方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conducted noise prediction for zero-crossing issue in totem-pole bridgeless PFC converter An improved model predictive controller for highly reliable grid connected photovoltaic multilevel inverters Analytical investigation of interleaved DC-DC converter using closed-coupled inductor with phase drive control Estimation of the dynamic leakage current of a supercapacitor in energy harvesting powered autonomous wireless sensor nodes Demand response using air conditioner
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1