Feature Selection for Metaheuristics Optimization Technique with Chaos

Sushovan Chaudhury, O. J. Oyebode, Dai-Long Ngo Hoang, F. Rabbi, S. Ajibade
{"title":"Feature Selection for Metaheuristics Optimization Technique with Chaos","authors":"Sushovan Chaudhury, O. J. Oyebode, Dai-Long Ngo Hoang, F. Rabbi, S. Ajibade","doi":"10.1109/CSPA55076.2022.9781989","DOIUrl":null,"url":null,"abstract":"Particle swarm optimization (PSO) is a global optimization method that is extremely effective. PSO's flaws include slow convergence, premature convergence, and getting stuck at local optima. In this paper, the chaos map and dynamic-weight Particle Swarm Optimization (CPSO) are combined with PSO to improve the search process by adjusting the inertia weight of PSO and changing the position update formula in the Chaos dynamic-weight Particle Swarm Optimization (CPSO), resulting in efficient balancing for local and global PSO feature selection processes. Using eight numerical functions, the performance of CPSO was compared to that of two metaheuristic techniques which are the original PSO and Differential Evolution (DE). The results reveal that the CPSO is an efficient feature selection technique that generates good results by balancing the exploration and exploitation search processes.","PeriodicalId":174315,"journal":{"name":"2022 IEEE 18th International Colloquium on Signal Processing & Applications (CSPA)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 18th International Colloquium on Signal Processing & Applications (CSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPA55076.2022.9781989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Particle swarm optimization (PSO) is a global optimization method that is extremely effective. PSO's flaws include slow convergence, premature convergence, and getting stuck at local optima. In this paper, the chaos map and dynamic-weight Particle Swarm Optimization (CPSO) are combined with PSO to improve the search process by adjusting the inertia weight of PSO and changing the position update formula in the Chaos dynamic-weight Particle Swarm Optimization (CPSO), resulting in efficient balancing for local and global PSO feature selection processes. Using eight numerical functions, the performance of CPSO was compared to that of two metaheuristic techniques which are the original PSO and Differential Evolution (DE). The results reveal that the CPSO is an efficient feature selection technique that generates good results by balancing the exploration and exploitation search processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混沌元启发式优化技术的特征选择
粒子群优化(PSO)是一种非常有效的全局优化方法。粒子群算法的缺陷包括收敛速度慢、过早收敛和陷入局部最优。本文将混沌映射和动态权值粒子群算法(CPSO)与粒子群算法(PSO)相结合,通过调整粒子群算法的惯性权值和改变混沌动态权值粒子群算法中的位置更新公式来改进搜索过程,实现局部和全局粒子群算法特征选择过程的有效平衡。利用8个数值函数,比较了两种元启发式算法(原始粒子群算法和差分进化算法)的性能。结果表明,CPSO是一种有效的特征选择技术,能够平衡探索和开发搜索过程,产生良好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear Time-Frequency Analysis of Lightning Strike Surge Current Waveforms Recorded at Gasing Hill, Kuala Lumpur Development of Integrated Sensor System for Intelligent Transportation System Image Steganalysis based on Pretrained Convolutional Neural Networks Segmentation and Classification for Breast Cancer Ultrasound Images Using Deep Learning Techniques: A Review Automated Trading System for Forecasting the Foreign Exchange Market Using Technical Analysis Indicators and Artificial Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1