Attack LSB Matching Steganography by Counting Alteration Rate of the Number of Neighbourhood Gray Levels

Fangjun Huang, Bin Li, Jiwu Huang
{"title":"Attack LSB Matching Steganography by Counting Alteration Rate of the Number of Neighbourhood Gray Levels","authors":"Fangjun Huang, Bin Li, Jiwu Huang","doi":"10.1109/ICIP.2007.4378976","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new method for attacking the LSB (least significant bit) matching based steganography. Different from the LSB substitution, the least two or more significant bit-planes of the cover image would be changed during the embedding in LSB matching steganography and thus the pairs of values do not exist in stego image. In our proposed method, we get an image by combining the least two significant bit-planes and divide it into 3x3 overlapped subimages. The subimages are grouped into four types, i.e. T 1,T 2, T 3 and T 4 according to the count of gray levels. Via embedding a random sequence by LSB matching and then computing the alteration rate of the number of elements in T 1, we find that normally the alteration rate is higher in cover image than in the corresponding stego image. This new finding is used as the discrimination rule in our method. Experimental results demonstrate that the proposed algorithm is efficient to detect the LSB matching stegonagraphy on uncompressed gray scale images.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4378976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

Abstract

In this paper, we propose a new method for attacking the LSB (least significant bit) matching based steganography. Different from the LSB substitution, the least two or more significant bit-planes of the cover image would be changed during the embedding in LSB matching steganography and thus the pairs of values do not exist in stego image. In our proposed method, we get an image by combining the least two significant bit-planes and divide it into 3x3 overlapped subimages. The subimages are grouped into four types, i.e. T 1,T 2, T 3 and T 4 according to the count of gray levels. Via embedding a random sequence by LSB matching and then computing the alteration rate of the number of elements in T 1, we find that normally the alteration rate is higher in cover image than in the corresponding stego image. This new finding is used as the discrimination rule in our method. Experimental results demonstrate that the proposed algorithm is efficient to detect the LSB matching stegonagraphy on uncompressed gray scale images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用邻域灰度值变化率攻击LSB匹配隐写
在本文中,我们提出了一种攻击基于LSB(最低有效位)匹配的隐写的新方法。与LSB替换不同的是,LSB匹配隐写在嵌入过程中会改变封面图像中至少两个或两个以上的有效位平面,因此隐写图像中不存在值对。在我们提出的方法中,我们通过组合最小两个有效位平面并将其划分为3x3重叠的子图像来获得图像。将子图像按灰度数分为t1、t2、t3、t4四种类型。通过LSB匹配嵌入一个随机序列,然后计算t1中元素个数的变化率,我们发现通常情况下,覆盖图像的变化率要高于相应的隐进图像。这一新发现在我们的方法中被用作判别规则。实验结果表明,该算法能够有效地检测未压缩灰度图像上的LSB匹配字写。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Block-Based Gradient Domain High Dynamic Range Compression Design for Real-Time Applications Generation of Layered Depth Images from Multi-View Video Detection Strategies for Image Cube Trajectory Analysis An Efficient Compression Algorithm for Hyperspectral Images Based on Correlation Coefficients Adaptive Three Dimensional Wavelet Zerotree Coding Enabling Introduction of Stereoscopic (3D) Video: Formats and Compression Standards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1