MOBDroid2: An Improved Feature Selection Method for Detecting Malicious Applications in a Mobile Cloud Computing Environment

Noah Oghenefego Ogwara, K. Petrova, M. Yang
{"title":"MOBDroid2: An Improved Feature Selection Method for Detecting Malicious Applications in a Mobile Cloud Computing Environment","authors":"Noah Oghenefego Ogwara, K. Petrova, M. Yang","doi":"10.1109/CSCI54926.2021.00137","DOIUrl":null,"url":null,"abstract":"This paper presents an ensemble machine learning (ML) based system for the detection of malicious applications in the Mobile Cloud Computing (MCC) Environment. The proposed system named MOBDroid2 applies a static feature analysis approach using the permissions and intents demanded by Android apps. The experiments conducted showed that the proposed system was able to effectively detect malicious and benign apps, achieving a classification accuracy rate of 98.16%, a precision rate of 98.95%, a recall rate of 98.20%, and a false alarm rate of 1.85%. The results obtained in our experiment compared well with other results reported in extant literature.","PeriodicalId":206881,"journal":{"name":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI54926.2021.00137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an ensemble machine learning (ML) based system for the detection of malicious applications in the Mobile Cloud Computing (MCC) Environment. The proposed system named MOBDroid2 applies a static feature analysis approach using the permissions and intents demanded by Android apps. The experiments conducted showed that the proposed system was able to effectively detect malicious and benign apps, achieving a classification accuracy rate of 98.16%, a precision rate of 98.95%, a recall rate of 98.20%, and a false alarm rate of 1.85%. The results obtained in our experiment compared well with other results reported in extant literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MOBDroid2:一种改进的移动云计算环境下恶意应用检测特征选择方法
本文提出了一种基于集成机器学习(ML)的移动云计算(MCC)环境中恶意应用检测系统。提出的MOBDroid2系统采用了一种静态特征分析方法,使用Android应用程序所需的权限和意图。实验表明,该系统能够有效地检测出恶意和良性应用,分类准确率为98.16%,准确率为98.95%,召回率为98.20%,误报率为1.85%。我们的实验结果与现有文献报道的其他结果比较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Remote Video Surveillance Effects of Social Distancing Intention, Affective Risk Perception, and Cabin Fever Syndrome on Perceived Value of E-learning : Type of submission: Late Breaking Paper / Most relevant symposium: CSCI-ISED Cybersecurity Integration: Deploying Critical Infrastructure Security and Resilience Topics into the Undergraduate Curriculum Distributed Algorithms for k-Coverage in Mobile Sensor Networks Software Development Methodologies for Virtual Reality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1