{"title":"Interference mitigation via successive cancellation in heterogeneous networks","authors":"O. Sahin, Jialing Li, Yingxue Li, P. Pietraski","doi":"10.1109/ISWCS.2011.6125368","DOIUrl":null,"url":null,"abstract":"In this paper, we present practical interference management schemes in heterogeneous networks (HetNets) based on interference decoding and cancellation at the receivers. The underlying idea is based on Han-Kobayashi type message splitting (MS) technique [3]. We develop relatively low-complexity precoders that facilitate interference mitigation and maximize sum-throughput in the network. System-level simulation results for a general HetNet system are presented. It is shown that the proposed MS design along with interference coordination among the cells provides up to 57% cell average throughput gain compared with the rank-1 coordinated beamforming (CBF) scheme. The design also provides substantial throughput gain in particular for Macro cells compared with rank-adaptive CBF transmission.","PeriodicalId":414065,"journal":{"name":"2011 8th International Symposium on Wireless Communication Systems","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 8th International Symposium on Wireless Communication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS.2011.6125368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper, we present practical interference management schemes in heterogeneous networks (HetNets) based on interference decoding and cancellation at the receivers. The underlying idea is based on Han-Kobayashi type message splitting (MS) technique [3]. We develop relatively low-complexity precoders that facilitate interference mitigation and maximize sum-throughput in the network. System-level simulation results for a general HetNet system are presented. It is shown that the proposed MS design along with interference coordination among the cells provides up to 57% cell average throughput gain compared with the rank-1 coordinated beamforming (CBF) scheme. The design also provides substantial throughput gain in particular for Macro cells compared with rank-adaptive CBF transmission.