Semantic Matching by Weakly Supervised 2D Point Set Registration

Zakaria Laskar, H. R. Tavakoli, Juho Kannala
{"title":"Semantic Matching by Weakly Supervised 2D Point Set Registration","authors":"Zakaria Laskar, H. R. Tavakoli, Juho Kannala","doi":"10.1109/WACV.2019.00118","DOIUrl":null,"url":null,"abstract":"In this paper we address the problem of establishing correspondences between different instances of the same object. The problem is posed as finding the geometric transformation that aligns a given image pair. We use a convolutional neural network (CNN) to directly regress the parameters of the transformation model. The alignment problem is defined in the setting where an unordered set of semantic key-points per image are available, but, without the correspondence information. To this end we propose a novel loss function based on cyclic consistency that solves this 2D point set registration problem by inferring the optimal geometric transformation model parameters. We train and test our approach on a standard benchmark dataset Proposal-Flow (PF-PASCAL). The proposed approach achieves state-of-the-art results demonstrating the effectiveness of the method. In addition, we show our approach further benefits from additional training samples in PF-PASCAL generated by using category level information.","PeriodicalId":436637,"journal":{"name":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2019.00118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper we address the problem of establishing correspondences between different instances of the same object. The problem is posed as finding the geometric transformation that aligns a given image pair. We use a convolutional neural network (CNN) to directly regress the parameters of the transformation model. The alignment problem is defined in the setting where an unordered set of semantic key-points per image are available, but, without the correspondence information. To this end we propose a novel loss function based on cyclic consistency that solves this 2D point set registration problem by inferring the optimal geometric transformation model parameters. We train and test our approach on a standard benchmark dataset Proposal-Flow (PF-PASCAL). The proposed approach achieves state-of-the-art results demonstrating the effectiveness of the method. In addition, we show our approach further benefits from additional training samples in PF-PASCAL generated by using category level information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于弱监督二维点集配准的语义匹配
本文讨论了在同一对象的不同实例之间建立对应关系的问题。这个问题被提出为寻找对齐给定图像对的几何变换。我们使用卷积神经网络(CNN)直接回归变换模型的参数。对齐问题是在这样的情况下定义的:每个图像都有一组无序的语义关键点,但是没有对应的信息。为此,我们提出了一种新的基于循环一致性的损失函数,通过推断最优几何变换模型参数来解决二维点集配准问题。我们在一个标准基准数据集Proposal-Flow (PF-PASCAL)上训练和测试了我们的方法。所提出的方法达到了最先进的结果,证明了该方法的有效性。此外,我们还展示了我们的方法从使用类别级别信息生成的PF-PASCAL中额外的训练样本中获得的进一步好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ancient Painting to Natural Image: A New Solution for Painting Processing GAN-Based Pose-Aware Regulation for Video-Based Person Re-Identification Coupled Generative Adversarial Network for Continuous Fine-Grained Action Segmentation Dense 3D Point Cloud Reconstruction Using a Deep Pyramid Network 3D Reconstruction and Texture Optimization Using a Sparse Set of RGB-D Cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1