Convolutional Neural Network Assisted Detection and Localization of UAVs with a Narrowband Multi-site Radar

Javier Martinez, D. Kopyto, Martin Schütz, M. Vossiek
{"title":"Convolutional Neural Network Assisted Detection and Localization of UAVs with a Narrowband Multi-site Radar","authors":"Javier Martinez, D. Kopyto, Martin Schütz, M. Vossiek","doi":"10.1109/ICMIM.2018.8443549","DOIUrl":null,"url":null,"abstract":"We present an approach to detect and locate non-cooperative UAVs from their micro-Doppler signature using a narrowband radar in a multi-site configuration. We describe a method for the localization of rotating objects with the geometric information obtained exclusively from their micro-Doppler signatures. This approach only requires very simple transceivers with CW waveforms, in a cost-effective multi-site architecture. A convolutional neural network is used to detect and identify the UAVs by extracting the characteristic features of their micro-Doppler signature. We present simulated and preliminary experimental data that show the technical viability of this concept.","PeriodicalId":342532,"journal":{"name":"2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIM.2018.8443549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present an approach to detect and locate non-cooperative UAVs from their micro-Doppler signature using a narrowband radar in a multi-site configuration. We describe a method for the localization of rotating objects with the geometric information obtained exclusively from their micro-Doppler signatures. This approach only requires very simple transceivers with CW waveforms, in a cost-effective multi-site architecture. A convolutional neural network is used to detect and identify the UAVs by extracting the characteristic features of their micro-Doppler signature. We present simulated and preliminary experimental data that show the technical viability of this concept.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的窄带多点雷达无人机检测与定位
我们提出了一种利用窄带雷达在多站点配置中从其微多普勒特征中检测和定位非合作无人机的方法。我们描述了一种利用旋转物体的微多普勒特征获得几何信息的定位方法。这种方法只需要具有CW波形的非常简单的收发器,具有成本效益的多站点架构。通过提取无人机微多普勒特征,利用卷积神经网络对无人机进行检测和识别。我们提出了模拟和初步的实验数据,表明这一概念的技术可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Instantaneous Actual Motion Estimation with a Single High-Resolution Radar Sensor Ego-Motion Estimation using Distributed Single-Channel Radar Sensors Design and Implementation of a FMCW GPR for UAV-based Mine Detection UAV-Based Ground Penetrating Synthetic Aperture Radar Human Motion Training Data Generation for Radar Based Deep Learning Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1