{"title":"On bit-interleaved turbo-coded modulation with low error floors","authors":"E. Rosnes, Øyvind Ytrehus","doi":"10.1109/ISIT.2004.1365090","DOIUrl":null,"url":null,"abstract":"In this work we introduce an algorithm to optimize the performance in the error floor region of bit-interleaved turbo-coded modulation (BITCM) on the additive white Gaussian noise (AWGN) channel. The key ingredient is an exact turbo code weight distribution algorithm producing a list of all codewords in the underlying turbo code of weight less than a given threshold. Using the union bounding technique, we show that a well-designed bit-interleaver is crucial to have a low error floor. Furthermore, the error rate performance in the waterfall region depends on the bit-interleaver, since the level of protection from channel noise on the bit-level depends on the bit-position and the neighboring bit values within the same symbol in the transmitted sequence. We observe a trade-off between error rate performance in the waterfall and error floor regions as illustrated by an extensive case study of a high-rate BITCM scheme.","PeriodicalId":269907,"journal":{"name":"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2004.1365090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work we introduce an algorithm to optimize the performance in the error floor region of bit-interleaved turbo-coded modulation (BITCM) on the additive white Gaussian noise (AWGN) channel. The key ingredient is an exact turbo code weight distribution algorithm producing a list of all codewords in the underlying turbo code of weight less than a given threshold. Using the union bounding technique, we show that a well-designed bit-interleaver is crucial to have a low error floor. Furthermore, the error rate performance in the waterfall region depends on the bit-interleaver, since the level of protection from channel noise on the bit-level depends on the bit-position and the neighboring bit values within the same symbol in the transmitted sequence. We observe a trade-off between error rate performance in the waterfall and error floor regions as illustrated by an extensive case study of a high-rate BITCM scheme.