Selection of Image Parameters as the First Step towards Creating a CBIR System for the Solar Dynamics Observatory

J. Banda, R. Angryk
{"title":"Selection of Image Parameters as the First Step towards Creating a CBIR System for the Solar Dynamics Observatory","authors":"J. Banda, R. Angryk","doi":"10.1109/DICTA.2010.94","DOIUrl":null,"url":null,"abstract":"This work describes the attribute evaluation sections of the ambitious goal of creating a large-scale content-based image retrieval (CBIR) system for solar phenomena in NASA images from the Solar Dynamics Observatory mission. This mission, with its Atmospheric Imaging Assembly (AIA), is generating eight 4096 pixels x 4096 pixels images every 10 seconds, leading to a data transmission rate of approximately 700 Gigabytes per day from only the AIA component (the entire mission is expected to be sending about 1.5 Terabytes of data per day, for a minimum of 5 years). We investigate unsupervised and supervised methods of selecting image parameters and their importance from the perspective of distinguishing between different types of solar phenomena by using correlation analysis, and three supervised attribute evaluation methods. By selecting the most relevant image parameters (out of the twelve tested) we expect to be able to save 540 Megabytes per day of storage costs for each parameter that we remove. In addition, we also applied several image filtering algorithms on these images in order to investigate the enhancement of our classification results. We confirm our experimental results by running multiple classifiers for comparative analysis on the selected image parameters and filters.","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

This work describes the attribute evaluation sections of the ambitious goal of creating a large-scale content-based image retrieval (CBIR) system for solar phenomena in NASA images from the Solar Dynamics Observatory mission. This mission, with its Atmospheric Imaging Assembly (AIA), is generating eight 4096 pixels x 4096 pixels images every 10 seconds, leading to a data transmission rate of approximately 700 Gigabytes per day from only the AIA component (the entire mission is expected to be sending about 1.5 Terabytes of data per day, for a minimum of 5 years). We investigate unsupervised and supervised methods of selecting image parameters and their importance from the perspective of distinguishing between different types of solar phenomena by using correlation analysis, and three supervised attribute evaluation methods. By selecting the most relevant image parameters (out of the twelve tested) we expect to be able to save 540 Megabytes per day of storage costs for each parameter that we remove. In addition, we also applied several image filtering algorithms on these images in order to investigate the enhancement of our classification results. We confirm our experimental results by running multiple classifiers for comparative analysis on the selected image parameters and filters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
选择图像参数作为创建太阳动力学观测站CBIR系统的第一步
这项工作描述了为来自太阳动力学观测任务的NASA图像中的太阳现象创建一个大规模基于内容的图像检索(CBIR)系统的雄心勃勃的目标的属性评估部分。这个任务,连同它的大气成像组件(AIA),每10秒生成8张4096像素x 4096像素的图像,导致仅AIA组件每天的数据传输速率约为700千兆字节(整个任务预计每天发送约1.5太字节的数据,至少5年)。从利用相关分析区分太阳现象类型的角度,探讨了无监督和有监督图像参数的选择方法及其重要性,以及三种监督属性评价方法。通过选择最相关的映像参数(从12个测试参数中),我们希望能够为我们删除的每个参数每天节省540兆字节的存储成本。此外,我们还对这些图像应用了几种图像滤波算法,以研究我们的分类结果的增强。我们通过运行多个分类器对所选图像参数和滤波器进行对比分析来验证我们的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pulse Repetition Interval Modulation Recognition Using Symbolization Vessel Segmentation from Color Retinal Images with Varying Contrast and Central Reflex Properties A Novel Algorithm for Text Detection and Localization in Natural Scene Images Image Retrieval with a Visual Thesaurus Chromosome Classification Based on Wavelet Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1