Automatic embryonic stem cells detection and counting method in fluorescence microscopy images

G. M. Faustino, M. Gattass, S. Rehen, C. Lucena
{"title":"Automatic embryonic stem cells detection and counting method in fluorescence microscopy images","authors":"G. M. Faustino, M. Gattass, S. Rehen, C. Lucena","doi":"10.1109/ISBI.2009.5193170","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an automatic embryonic stem cell detection and counting method for fluorescence microscopy images. We handle with pluripotent stem cells cultured in vitro. Our approach uses the luminance information to generate a graph-based image representation. Next, a graph mining process is used to detect the cells. The proposed method was extensively tested on a database of 92 images and specialists validated the results. We obtained an average precision, recall and F-measure of 93.97%, 92.04% and 92.87%, respectively.","PeriodicalId":272938,"journal":{"name":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2009.5193170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

In this paper, we propose an automatic embryonic stem cell detection and counting method for fluorescence microscopy images. We handle with pluripotent stem cells cultured in vitro. Our approach uses the luminance information to generate a graph-based image representation. Next, a graph mining process is used to detect the cells. The proposed method was extensively tested on a database of 92 images and specialists validated the results. We obtained an average precision, recall and F-measure of 93.97%, 92.04% and 92.87%, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
荧光显微镜图像中胚胎干细胞的自动检测和计数方法
在本文中,我们提出了一种胚胎干细胞荧光显微镜图像自动检测和计数方法。我们处理体外培养的多能干细胞。我们的方法使用亮度信息来生成基于图形的图像表示。接下来,使用图挖掘过程来检测单元。该方法在一个包含92张图像的数据库上进行了广泛的测试,专家验证了结果。平均精密度、召回率和f测量值分别为93.97%、92.04%和92.87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic alignment of stacks of filament data Analysis of nerve activity and optical signals from mouse brain stem to identify cells generating respiratory rhythms Segmentation and classification of triple negative breast cancers using DCE-MRI Improved registration for large electron microscopy images Special purpose 3-D reconstruction and restoration algorithms for electron microscopy of nanoscale objects and an enabling software toolkit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1