Recovering Cross-Device Connections via Mining IP Footprints with Ensemble Learning

Xuezhi Cao, Weiyue Huang, Yong Yu
{"title":"Recovering Cross-Device Connections via Mining IP Footprints with Ensemble Learning","authors":"Xuezhi Cao, Weiyue Huang, Yong Yu","doi":"10.1109/ICDMW.2015.129","DOIUrl":null,"url":null,"abstract":"This paper describes our solution to ICDM 2015's contest. The challenge is to recover cross-device connections, i.e. identifying device-cookie pairs that is used by the same natural person. To tackle this task, we first model the privateness of each IP, then employ pairwise ranking techniques for predicting the likelihood of each connection, finally ensemble learning is used for integrating multiple models from various settings. Our approach achieves 5th place in the contest (average F-score of 0.8608) using ONLY IP footprint information.","PeriodicalId":192888,"journal":{"name":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2015.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper describes our solution to ICDM 2015's contest. The challenge is to recover cross-device connections, i.e. identifying device-cookie pairs that is used by the same natural person. To tackle this task, we first model the privateness of each IP, then employ pairwise ranking techniques for predicting the likelihood of each connection, finally ensemble learning is used for integrating multiple models from various settings. Our approach achieves 5th place in the contest (average F-score of 0.8608) using ONLY IP footprint information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过集成学习挖掘IP足迹恢复跨设备连接
本文介绍了我们在ICDM 2015竞赛中的解决方案。挑战在于恢复跨设备连接,即识别由同一自然人使用的设备cookie对。为了解决这个问题,我们首先对每个IP的隐私性进行建模,然后使用两两排序技术来预测每个连接的可能性,最后使用集成学习来集成来自不同设置的多个模型。我们的方法仅使用IP占用信息,在竞赛中获得第五名(平均f值为0.8608)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large-Scale Linear Support Vector Ordinal Regression Solver Joint Recovery and Representation Learning for Robust Correlation Estimation Based on Partially Observed Data Accurate Classification of Biological Data Using Ensembles Large-Scale Unusual Time Series Detection Sentiment Polarity Classification Using Structural Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1