Automatic Facial Expression Recognition System Using Shape-Information-Matrix (SIM): An Expression Specific Approach

Avishek Nandi, P. Dutta, Md. Nasir
{"title":"Automatic Facial Expression Recognition System Using Shape-Information-Matrix (SIM): An Expression Specific Approach","authors":"Avishek Nandi, P. Dutta, Md. Nasir","doi":"10.4018/ijncr.2020100103","DOIUrl":null,"url":null,"abstract":"Automatic recognition of facial expressions and modeling of human expressions are very essential in the field of affective computing. The authors have introduced a novel geometric and texture-based method to extract the shapio-geometric features from an image computed by landmarking the geometric locations of facial components using the active appearance model (AAM). Expression-specific analysis of facial landmark points is carried out to select a set of landmark points for each expression to identify features for each specific expression. The shape information matrix (SIM) is constructed the set salient landmark points assign to an expression. Finally, the histogram-oriented gradients (HoG) of SIM are computed which is used for classification with multi-layer perceptron (MLP). The proposed method is tested and validated on four well-known benchmark databases, which are CK+, JAFFE, MMI, and MUG. The proposed system achieved 98.5%, 97.6%, 96.4%, and 97.0% accuracy in CK+, JAFFE, MMI, and MUG database, respectively.","PeriodicalId":369881,"journal":{"name":"Int. J. Nat. Comput. Res.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Nat. Comput. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijncr.2020100103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic recognition of facial expressions and modeling of human expressions are very essential in the field of affective computing. The authors have introduced a novel geometric and texture-based method to extract the shapio-geometric features from an image computed by landmarking the geometric locations of facial components using the active appearance model (AAM). Expression-specific analysis of facial landmark points is carried out to select a set of landmark points for each expression to identify features for each specific expression. The shape information matrix (SIM) is constructed the set salient landmark points assign to an expression. Finally, the histogram-oriented gradients (HoG) of SIM are computed which is used for classification with multi-layer perceptron (MLP). The proposed method is tested and validated on four well-known benchmark databases, which are CK+, JAFFE, MMI, and MUG. The proposed system achieved 98.5%, 97.6%, 96.4%, and 97.0% accuracy in CK+, JAFFE, MMI, and MUG database, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于形状信息矩阵(SIM)的面部表情自动识别系统:一种针对特定表情的方法
面部表情的自动识别和人类表情的建模在情感计算领域是非常重要的。作者提出了一种基于几何和纹理的新方法,通过使用主动外观模型(AAM)标记面部成分的几何位置,从计算的图像中提取形状几何特征。对面部地标点进行表情特异性分析,为每个表情选择一组地标点,识别每个特定表情的特征。形状信息矩阵(SIM)由一组显著的地标点组成。最后,计算了SIM的直方图导向梯度(HoG),并将其用于多层感知器(MLP)的分类。在CK+、JAFFE、MMI和MUG四个著名的基准数据库上进行了测试和验证。该系统在CK+、JAFFE、MMI和MUG数据库中的准确率分别达到98.5%、97.6%、96.4%和97.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insights Into Incorporating Trustworthiness and Ethics in AI Systems With Explainable AI Concept Drift Adaptation in Intrusion Detection Systems Using Ensemble Learning Natural Computing of Human Facial Emotion Using Multi-Learning Fuzzy Approach Detection of Small Oranges Using YOLO v3 Feature Pyramid Mechanism Performance Parameter Evaluation of 7nm FinFET by Tuning Metal Work Function and High K Dielectrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1