Optimal circular 3-arced with constant speed coordinated maneuvers for planar multi aircraft conflict resolution

M. Malaek, J. Parastari
{"title":"Optimal circular 3-arced with constant speed coordinated maneuvers for planar multi aircraft conflict resolution","authors":"M. Malaek, J. Parastari","doi":"10.1109/DASC.2004.1391305","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of designing optimal conflict-free maneuvers for multiple aircraft encounters is studied. The proposed maneuvers are based on changes of heading, speed and maneuvering time. The optimality of maneuvers among the conflict-free constraint is based on minimization of a certain cost function based on kinetic energy of either aircraft involved. Some suitable priority weight factors are incorporated into the cost function so that optimal resolution maneuvers are such that aircraft with lower priorities assume more responsibility in resolving the conflicts. As for considering aircraft turning dynamics, the circular 3-arced path with constant speed are proposed for each aircraft maneuver rather than the well known optimal two-legged solutions. Fairly thorough simulations have been done to evaluate the effectiveness of the methodology, while some are presented here to illustrate the effectiveness of the proposed algorithms for real time conflict resolution.","PeriodicalId":422463,"journal":{"name":"The 23rd Digital Avionics Systems Conference (IEEE Cat. No.04CH37576)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 23rd Digital Avionics Systems Conference (IEEE Cat. No.04CH37576)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.2004.1391305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, the problem of designing optimal conflict-free maneuvers for multiple aircraft encounters is studied. The proposed maneuvers are based on changes of heading, speed and maneuvering time. The optimality of maneuvers among the conflict-free constraint is based on minimization of a certain cost function based on kinetic energy of either aircraft involved. Some suitable priority weight factors are incorporated into the cost function so that optimal resolution maneuvers are such that aircraft with lower priorities assume more responsibility in resolving the conflicts. As for considering aircraft turning dynamics, the circular 3-arced path with constant speed are proposed for each aircraft maneuver rather than the well known optimal two-legged solutions. Fairly thorough simulations have been done to evaluate the effectiveness of the methodology, while some are presented here to illustrate the effectiveness of the proposed algorithms for real time conflict resolution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
平面多机冲突解决的最优圆弧等速协调机动
研究了多机相遇的最优无冲突机动设计问题。所提出的机动是基于航向、速度和机动时间的变化。无冲突约束下机动的最优性是基于某一代价函数的最小化。在成本函数中加入适当的优先级权重因子,使优先级较低的飞机在解决冲突时承担更多的责任。在考虑飞机转弯动力学的情况下,针对飞机的每次机动,提出了等速3圆弧路径,而不是传统的两足最优解。已经进行了相当彻底的模拟来评估该方法的有效性,而这里提出的一些模拟是为了说明所提出的算法在实时冲突解决方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aging avionics and net-centric operations Space shuttle UHF communications performance evaluation The application of fiber optic wavelength division multiplexing in RF avionics Scheduling heuristics for on-board sequential air conflict solving TDMS: test data management system for aviation software
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1