Fixed-Final Time Constrained Optimal Control of Nonlinear Systems Using Neural Network HJB Approach

Tao Cheng, F. Lewis
{"title":"Fixed-Final Time Constrained Optimal Control of Nonlinear Systems Using Neural Network HJB Approach","authors":"Tao Cheng, F. Lewis","doi":"10.1109/CDC.2006.377523","DOIUrl":null,"url":null,"abstract":"Fixed-final time constrained input optimal control laws using neural networks to solve Hamilton-Jacobi-Bellman (HJB) equations for general affine in the input nonlinear systems are proposed. A neural network is used to approximate the time-varying cost function using the method of least-squares on a pre-defined region and hence solve the HJB. The result is a neural network nearly optimal constrained feedback controller that has time-varying coefficients found by a priori offline tuning. The results of this paper are demonstrated on an example.","PeriodicalId":411031,"journal":{"name":"IEEE Conference on Decision and Control","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2006.377523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

Fixed-final time constrained input optimal control laws using neural networks to solve Hamilton-Jacobi-Bellman (HJB) equations for general affine in the input nonlinear systems are proposed. A neural network is used to approximate the time-varying cost function using the method of least-squares on a pre-defined region and hence solve the HJB. The result is a neural network nearly optimal constrained feedback controller that has time-varying coefficients found by a priori offline tuning. The results of this paper are demonstrated on an example.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络HJB方法的非线性系统定终时间约束最优控制
提出了用神经网络求解广义仿射Hamilton-Jacobi-Bellman (HJB)方程的定终时间约束输入最优控制律。利用神经网络在预定义区域上用最小二乘法逼近时变代价函数,从而求解HJB。结果得到一个具有时变系数的神经网络近最优约束反馈控制器,该控制器通过先验离线调谐得到。最后通过一个算例验证了本文的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Consensus Problems on Clustered Networks Breaker page A Sufficient Condition for the Almost Global Stability of Nonlinear Switched Systems with Average Dwell Time Affine systems on Lie groups and invariance entropy Fast nonsingular integral terminal sliding mode control for nonlinear dynamical systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1