Quantum Chemical Study of Some Basic Organic Compounds as the Corrosion Inhibitors

Lana Ahmed, N. Bulut, O. Kaygili, R. Omer
{"title":"Quantum Chemical Study of Some Basic Organic Compounds as the Corrosion Inhibitors","authors":"Lana Ahmed, N. Bulut, O. Kaygili, R. Omer","doi":"10.54565/jphcfum.1263803","DOIUrl":null,"url":null,"abstract":"The corrosion inhibitor activities of 10 molecules (Benzene (C1), Phenol (C2), Toluene (C3), Benzoic acid (C4), Acetophenone (C5), Chlorobenzene (C6), Bromobenzene (C7), Benzaldehyde (C8), Naphthalene (C9), and Anthracene (C10) were investigated using quantum mechanical methods. The energy of the highest occupied molecular orbital (EHOMO), the energy of the lowest occupied molecular orbital (ELUMO), the energy bandgap (E = ELUMO - EHOMO), and the dipole moment (μ) were all estimated in this study. The parameters mentioned can provide information about the corrosion efficiency of organic compounds. In addition, the density functional theory (DFT) was used to determine the geometry of the molecules as well as the electronic properties of the compounds. Physical parameters such as chemical hardness (ɳ), softness (σ), and electronegativity (χ) were determined using B3LYP/6-31G (d, p). As well as the quantum chemistry properties like the fraction of electrons transported (ΔN) between the iron surface and the titled compounds have been calculated. This research also aimed to find which variables have a significant linear relationship with inhibitory performance. According to the results, the behavior of organic-based corrosion inhibitors is related to the effectiveness of good corrosion inhibitors and the quantum chemical parameters measured during this process. As a result, corrosion inhibitor behavior can be predicted without the need for an experiment.","PeriodicalId":196782,"journal":{"name":"Journal of Physical Chemistry and Functional Materials","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Chemistry and Functional Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54565/jphcfum.1263803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The corrosion inhibitor activities of 10 molecules (Benzene (C1), Phenol (C2), Toluene (C3), Benzoic acid (C4), Acetophenone (C5), Chlorobenzene (C6), Bromobenzene (C7), Benzaldehyde (C8), Naphthalene (C9), and Anthracene (C10) were investigated using quantum mechanical methods. The energy of the highest occupied molecular orbital (EHOMO), the energy of the lowest occupied molecular orbital (ELUMO), the energy bandgap (E = ELUMO - EHOMO), and the dipole moment (μ) were all estimated in this study. The parameters mentioned can provide information about the corrosion efficiency of organic compounds. In addition, the density functional theory (DFT) was used to determine the geometry of the molecules as well as the electronic properties of the compounds. Physical parameters such as chemical hardness (ɳ), softness (σ), and electronegativity (χ) were determined using B3LYP/6-31G (d, p). As well as the quantum chemistry properties like the fraction of electrons transported (ΔN) between the iron surface and the titled compounds have been calculated. This research also aimed to find which variables have a significant linear relationship with inhibitory performance. According to the results, the behavior of organic-based corrosion inhibitors is related to the effectiveness of good corrosion inhibitors and the quantum chemical parameters measured during this process. As a result, corrosion inhibitor behavior can be predicted without the need for an experiment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一些碱性有机化合物作为缓蚀剂的量子化学研究
采用量子力学方法研究了苯(C1)、苯酚(C2)、甲苯(C3)、苯甲酸(C4)、苯乙酮(C5)、氯苯(C6)、溴苯(C7)、苯甲醛(C8)、萘(C9)、蒽(C10)等10种分子的缓蚀剂活性。本文还计算了其最高已占据轨道(EHOMO)的能量、最低已占据轨道(ELUMO)的能量、能带隙(E = ELUMO - EHOMO)和偶极矩(μ)。上述参数可以提供有关有机化合物腐蚀效率的信息。此外,密度泛函理论(DFT)用于确定分子的几何形状以及化合物的电子性质。利用B3LYP/6-31G (d, p)测定了化学硬度(%)、柔软度(σ)和电负性(χ)等物理参数,并计算了铁表面与化合物之间的电子传递率(ΔN)等量子化学性质。本研究还旨在发现哪些变量与抑制表现有显著的线性关系。结果表明,有机基缓蚀剂的行为与良好缓蚀剂的有效性和在此过程中测量的量子化学参数有关。因此,不需要实验就可以预测缓蚀剂的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of the effects of immersion period of simulated body fluid on the morphology and structural properties of Fe/Ni co-doped chlorapatites A Novel HPLC Method for Rapid Determination of HMF in Dulce de Leche: A Potential Tool for Quality Control OPTICAL AND MAGNETIC BEHAVIOR OF Ni45Mn40Sn10Cu5 HEUSLER ALLOY Composition and Properties of Aspirin Through DFT Analysis A Review on Comparison between NiTi-Based and Cu-Based Shape Memory Alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1