Optimum-Path Forest Classifier for Large Scale Biometric Applications

L. C. Afonso, J. Papa, A. Marana, A. Poursaberi, S. Yanushkevich, M. Gavrilova
{"title":"Optimum-Path Forest Classifier for Large Scale Biometric Applications","authors":"L. C. Afonso, J. Papa, A. Marana, A. Poursaberi, S. Yanushkevich, M. Gavrilova","doi":"10.1109/EST.2012.31","DOIUrl":null,"url":null,"abstract":"This paper addresses biometric identification using large databases, in particular, iris databases. In such applications, it is critical to have low response time, while maintaining an acceptable recognition rate. Thus, the trade-off between speed and accuracy must be evaluated for processing and recognition parts of an identification system. In this paper, a graph-based framework for pattern recognition, called Optimum-Path Forest (OPF), is utilized as a classifier in a pre-developed iris recognition system. The aim of this paper is to verify the effectiveness of OPF in the field of iris recognition, and its performance for various scale iris databases. The existing Gauss-Laguerre Wavelet based coding scheme is used for iris encoding. The performance of the OPF and two other - Hamming and Bayesian - classifiers, is compared using small, medium, and large-scale databases. Such a comparison shows that the OPF has faster response for large-scale databases, thus performing better than the more accurate, but slower, classifiers.","PeriodicalId":314247,"journal":{"name":"2012 Third International Conference on Emerging Security Technologies","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third International Conference on Emerging Security Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EST.2012.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper addresses biometric identification using large databases, in particular, iris databases. In such applications, it is critical to have low response time, while maintaining an acceptable recognition rate. Thus, the trade-off between speed and accuracy must be evaluated for processing and recognition parts of an identification system. In this paper, a graph-based framework for pattern recognition, called Optimum-Path Forest (OPF), is utilized as a classifier in a pre-developed iris recognition system. The aim of this paper is to verify the effectiveness of OPF in the field of iris recognition, and its performance for various scale iris databases. The existing Gauss-Laguerre Wavelet based coding scheme is used for iris encoding. The performance of the OPF and two other - Hamming and Bayesian - classifiers, is compared using small, medium, and large-scale databases. Such a comparison shows that the OPF has faster response for large-scale databases, thus performing better than the more accurate, but slower, classifiers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模生物识别应用的最优路径森林分类器
本文讨论了使用大型数据库,特别是虹膜数据库的生物特征识别。在这样的应用程序中,在保持可接受的识别率的同时保持较低的响应时间是至关重要的。因此,对于识别系统的处理和识别部分,必须评估速度和准确性之间的权衡。本文将基于图的模式识别框架——最优路径森林(OPF)作为分类器应用于预开发的虹膜识别系统。本文的目的是验证OPF在虹膜识别领域的有效性,以及它在不同规模虹膜数据库中的性能。采用现有的基于高斯-拉盖尔小波的编码方案进行虹膜编码。OPF和另外两种分类器(Hamming和Bayesian)的性能在小型、中型和大型数据库中进行了比较。这样的比较表明,OPF对大规模数据库的响应速度更快,因此比更准确但更慢的分类器表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MultiMind: Multi-Brain Signal Fusion to Exceed the Power of a Single Brain Weightless Neural System Employing Simple Sensor Data for Efficient Real-Time Round-Corner, Junction and Doorway Detection for Autonomous System Path Planning in Smart Robotic Assisted Healthcare Wheelchairs FPGA-Based Platform for Real-Time Internet Optimization and Sequence Search Based Localization in Wireless Sensor Networks A Knowledge Fusion Toolkit for Decision Making
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1