Vehicular and Edge Computing for Emerging Connected and Autonomous Vehicle Applications

S. Baidya, Yu-Jen Ku, Hengyu Zhao, Jishen Zhao, S. Dey
{"title":"Vehicular and Edge Computing for Emerging Connected and Autonomous Vehicle Applications","authors":"S. Baidya, Yu-Jen Ku, Hengyu Zhao, Jishen Zhao, S. Dey","doi":"10.1109/DAC18072.2020.9218618","DOIUrl":null,"url":null,"abstract":"Emerging connected and autonomous vehicles involve complex applications requiring not only optimal computing resource allocations but also efficient computing architectures. In this paper, we unfold the critical performance metrics required for emerging vehicular computing applications and show with preliminary experimental results, how optimal choices can be made to satisfy the static and dynamic computing requirements in terms of the performance metrics. We also discuss the feasibility of edge computing architectures for vehicular computing and show tradeoffs for different offloading strategies. The paper shows directions for light weight, high performance and low power computing paradigms, architectures and design-space exploration tools to satisfy evolving applications and requirements for connected and autonomous vehicles.","PeriodicalId":428807,"journal":{"name":"2020 57th ACM/IEEE Design Automation Conference (DAC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 57th ACM/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC18072.2020.9218618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Emerging connected and autonomous vehicles involve complex applications requiring not only optimal computing resource allocations but also efficient computing architectures. In this paper, we unfold the critical performance metrics required for emerging vehicular computing applications and show with preliminary experimental results, how optimal choices can be made to satisfy the static and dynamic computing requirements in terms of the performance metrics. We also discuss the feasibility of edge computing architectures for vehicular computing and show tradeoffs for different offloading strategies. The paper shows directions for light weight, high performance and low power computing paradigms, architectures and design-space exploration tools to satisfy evolving applications and requirements for connected and autonomous vehicles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新兴互联和自动驾驶汽车应用的车辆和边缘计算
新兴的联网和自动驾驶汽车涉及复杂的应用,不仅需要最佳的计算资源分配,还需要高效的计算架构。在本文中,我们展示了新兴车辆计算应用所需的关键性能指标,并通过初步的实验结果展示了如何在性能指标方面做出最佳选择以满足静态和动态计算需求。我们还讨论了边缘计算架构用于车辆计算的可行性,并展示了不同卸载策略的权衡。本文展示了轻量化、高性能和低功耗计算范式、架构和设计空间探索工具的发展方向,以满足联网和自动驾驶汽车不断发展的应用和需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FCNNLib: An Efficient and Flexible Convolution Algorithm Library on FPGAs AXI HyperConnect: A Predictable, Hypervisor-level Interconnect for Hardware Accelerators in FPGA SoC Pythia: Intellectual Property Verification in Zero-Knowledge Reuse-trap: Re-purposing Cache Reuse Distance to Defend against Side Channel Leakage Navigator: Dynamic Multi-kernel Scheduling to Improve GPU Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1