Optimized Common Parameter Set Extraction Framework by Multiple Benchmarking Applications on a Big Data Platform

Jongyeop Kim, Abhilash Kancharla, Jongho Seol, Indy Park, N. Park
{"title":"Optimized Common Parameter Set Extraction Framework by Multiple Benchmarking Applications on a Big Data Platform","authors":"Jongyeop Kim, Abhilash Kancharla, Jongho Seol, Indy Park, N. Park","doi":"10.2991/IJNDC.2018.4.6.1","DOIUrl":null,"url":null,"abstract":"The Apache Hadoop Distributed File System (HDFS) [1] is one of the prominent engines as a big data processing framework [2] with its distributed processing capabilities over a cluster that composed of multiple nodes [3]. The core technology of this open source is called map and reduce, which is accomplished by appropriately splitting a big task into each node and merging it through inter process communication.","PeriodicalId":318936,"journal":{"name":"Int. J. Networked Distributed Comput.","volume":"48 23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Networked Distributed Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/IJNDC.2018.4.6.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Apache Hadoop Distributed File System (HDFS) [1] is one of the prominent engines as a big data processing framework [2] with its distributed processing capabilities over a cluster that composed of multiple nodes [3]. The core technology of this open source is called map and reduce, which is accomplished by appropriately splitting a big task into each node and merging it through inter process communication.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于大数据平台多标杆应用的公共参数集提取框架优化
Apache Hadoop分布式文件系统(Hadoop Distributed File System, HDFS)[1]作为大数据处理框架的突出引擎之一[2],其在由多个节点组成的集群上具有分布式处理能力[3]。这个开放源代码的核心技术称为map and reduce,它通过将一个大任务适当地拆分到每个节点,并通过进程间通信将其合并来实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Parameter Tuning for Constructing Storage Tiers in an Autonomous Distributed Storage System Application of 2‑gram and 3‑gram to Obtain Factor Scores of Statements Posted at Q&A Sites Bountychain: Toward Decentralizing a Bug Bounty Program with Blockchain and IPFS Secure Communications by Tit-for-Tat Strategy in Vehicular Networks Vehicle Platooning Systems: Review, Classification and Validation Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1