{"title":"A Comparative Investigation of Eye Fixation-based 4-Class Emotion Recognition in Virtual Reality Using Machine Learning","authors":"Jia Zheng Lim, J. Mountstephens, J. Teo","doi":"10.1109/ICCSCE52189.2021.9530980","DOIUrl":null,"url":null,"abstract":"Research on emotion recognition that relies purely on eye-tracking data is very limited although the usability of eye-tracking technology has great potential for emotional recognition. This paper proposes a novel approach for 4-class emotion classification using eye-tracking data solely in virtual reality (VR) with machine learning algorithms. We classify emotions into four specific classes using VR stimulus. Eye fixation data was used as the emotional-relevant feature in this investigation. A presentation of 3600 videos, which contains four different sessions, was played in VR to evoke the user’s emotions. The eye-tracking data was collected and recorded using an add-on eye-tracker in the VR headset. Three classifiers were used in the experiment, which are k-nearest neighbor (KNN), random forest (RF), and support vector machine (SVM). The findings showed that RF has the best performance among the classifiers, and achieved the highest accuracy of 80.55%.","PeriodicalId":285507,"journal":{"name":"2021 11th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE52189.2021.9530980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Research on emotion recognition that relies purely on eye-tracking data is very limited although the usability of eye-tracking technology has great potential for emotional recognition. This paper proposes a novel approach for 4-class emotion classification using eye-tracking data solely in virtual reality (VR) with machine learning algorithms. We classify emotions into four specific classes using VR stimulus. Eye fixation data was used as the emotional-relevant feature in this investigation. A presentation of 3600 videos, which contains four different sessions, was played in VR to evoke the user’s emotions. The eye-tracking data was collected and recorded using an add-on eye-tracker in the VR headset. Three classifiers were used in the experiment, which are k-nearest neighbor (KNN), random forest (RF), and support vector machine (SVM). The findings showed that RF has the best performance among the classifiers, and achieved the highest accuracy of 80.55%.