{"title":"Intelligent Production and Detection Template of Outlier Dataset Using Clustering","authors":"Rasoul Kiani, M. Montazeri, B. Minaei-Bidgoli","doi":"10.1109/KBEI.2019.8734928","DOIUrl":null,"url":null,"abstract":"Outliers are data with anomalous behaviors to other datasets. There are three different types of outliers, namely point anomaly, collective anomaly, and conditional anomaly. Different density-, clustering-, distance-, and distribution-based methods are used to detect outliers. It is obvious that before testing detection algorithms, a dataset that encompasses different types of outliers is required. In this paper an intelligent clustering algorithm is presented to produce a dataset consisting of different outliers. The other important point in this paper is the probability of two uninvestigated types of collective data among datasets that the anomalies are called type I and II. Results show that the proposed algorithm is capable of producing a dataset including different types of outliers. This dataset can be used in all outlier detection techniques. In addition to detection of point anomalies, it can detect all collective anomalies.","PeriodicalId":339990,"journal":{"name":"2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KBEI.2019.8734928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Outliers are data with anomalous behaviors to other datasets. There are three different types of outliers, namely point anomaly, collective anomaly, and conditional anomaly. Different density-, clustering-, distance-, and distribution-based methods are used to detect outliers. It is obvious that before testing detection algorithms, a dataset that encompasses different types of outliers is required. In this paper an intelligent clustering algorithm is presented to produce a dataset consisting of different outliers. The other important point in this paper is the probability of two uninvestigated types of collective data among datasets that the anomalies are called type I and II. Results show that the proposed algorithm is capable of producing a dataset including different types of outliers. This dataset can be used in all outlier detection techniques. In addition to detection of point anomalies, it can detect all collective anomalies.