An Energy Efficient Clustering Protocol using Enhanced Rain Optimization Algorithm in Mobile Adhoc Networks

M. Elhoseny, X. Yuan
{"title":"An Energy Efficient Clustering Protocol using Enhanced Rain Optimization Algorithm in Mobile Adhoc Networks","authors":"M. Elhoseny, X. Yuan","doi":"10.54216/jcim.070201","DOIUrl":null,"url":null,"abstract":"Energy efficiency is a significant challenge in mobile ad hoc networks (MANETs) design where the nodes move randomly with limited energy, leading to acceptable topology modifications. Clustering is a widely applied technique to accomplish energy efficiency in MANET. Therefore, this paper designs a new energy-efficient clustering protocol using an enhanced rain optimization algorithm (EECP-EROA) for MANET. The EROA technique is derived by integrating the Levy flight concept to the ROA to enhance global exploration abilities. In addition, the EECP-EROA technique intends to proficiently select CHs and the nearby nodes linked to the CH to generate clusters. Moreover, the EECP-EROA technique has derived an objective function with different input parameters. To showcase the superior performance of the EECP-EROA technique, a brief set of simulations takes place, and the results are inspected under varying aspects. The experimental values pointed out the betterment of the EECP-EROA technique over the other methods.","PeriodicalId":169383,"journal":{"name":"Journal of Cybersecurity and Information Management","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cybersecurity and Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/jcim.070201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Energy efficiency is a significant challenge in mobile ad hoc networks (MANETs) design where the nodes move randomly with limited energy, leading to acceptable topology modifications. Clustering is a widely applied technique to accomplish energy efficiency in MANET. Therefore, this paper designs a new energy-efficient clustering protocol using an enhanced rain optimization algorithm (EECP-EROA) for MANET. The EROA technique is derived by integrating the Levy flight concept to the ROA to enhance global exploration abilities. In addition, the EECP-EROA technique intends to proficiently select CHs and the nearby nodes linked to the CH to generate clusters. Moreover, the EECP-EROA technique has derived an objective function with different input parameters. To showcase the superior performance of the EECP-EROA technique, a brief set of simulations takes place, and the results are inspected under varying aspects. The experimental values pointed out the betterment of the EECP-EROA technique over the other methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于增强型Rain优化算法的移动自组网节能聚类协议
能源效率是移动自组织网络(manet)设计中的一个重大挑战,在这种网络中,节点以有限的能量随机移动,从而导致可接受的拓扑修改。聚类是一种广泛应用于自组网的节能技术。为此,本文采用增强型降雨优化算法(EECP-EROA)为MANET设计了一种新的节能聚类协议。EROA技术是通过将Levy飞行概念与ROA相结合而衍生出来的,以提高全球勘探能力。此外,EECP-EROA技术旨在熟练地选择CHs和连接到CH的附近节点来生成聚类。此外,EECP-EROA技术还推导出了具有不同输入参数的目标函数。为了展示EECP-EROA技术的优越性能,进行了一组简短的仿真,并从各个方面对结果进行了检查。实验结果表明,EECP-EROA技术优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
期刊最新文献
A Systematic Review of Privacy Preserving Healthcare Data Sharing on Blockchain Design, development and performance estimation of 110 kW kinetic heating simulation facilities for material studies–Phase I Impact of Cyber Attack on Saudi Aramco Image Classification Based On CNN: A Survey An Artificial Intelligence-based Intrusion Detection System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1