{"title":"Energy recovery clocking scheme and flip-flops for ultra low-energy applications","authors":"M. Cooke, H. Mahmoodi, K. Roy","doi":"10.1109/LPE.2003.1231835","DOIUrl":null,"url":null,"abstract":"A significant fraction of the total power in highly synchronous systems is dissipated over clock networks. Hence, low-power clocking schemes would be promising approaches for future designs. We propose four novel energy recovery flip-flops that enable energy recovery from the clock network, resulting in significant energy savings. The proposed flip-flops operate with a single-phase sinusoidal clock, which can be generated with high efficiency. Based on the simulation results using TSMC 0.25 /spl mu/m CMOS process technology, at a frequency of 200 MHz, the proposed flip-flops exhibit more than 80% delay reduction, power reduction of up to 46%, and area reduction of up to 77%, as compared to the conventional energy recovery flip-flop. We implemented 1024 proposed energy recovery flip-flops through an H-tree clock network driven by a resonant clock-generator that generates a sinusoidal clock. Results show a power reduction of 90% on the clock-tree and total power savings of up to 83% as compared to the same implementation using the conventional square-wave clocking scheme and flip-flops.","PeriodicalId":355883,"journal":{"name":"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LPE.2003.1231835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40
Abstract
A significant fraction of the total power in highly synchronous systems is dissipated over clock networks. Hence, low-power clocking schemes would be promising approaches for future designs. We propose four novel energy recovery flip-flops that enable energy recovery from the clock network, resulting in significant energy savings. The proposed flip-flops operate with a single-phase sinusoidal clock, which can be generated with high efficiency. Based on the simulation results using TSMC 0.25 /spl mu/m CMOS process technology, at a frequency of 200 MHz, the proposed flip-flops exhibit more than 80% delay reduction, power reduction of up to 46%, and area reduction of up to 77%, as compared to the conventional energy recovery flip-flop. We implemented 1024 proposed energy recovery flip-flops through an H-tree clock network driven by a resonant clock-generator that generates a sinusoidal clock. Results show a power reduction of 90% on the clock-tree and total power savings of up to 83% as compared to the same implementation using the conventional square-wave clocking scheme and flip-flops.