Comparison of CNN-based Speech Dereverberation using Neural Vocoder

Chanjun Chun, Kwang Myung Jeon, Chaejun Leem, Bumshik Lee, Wooyeol Choi
{"title":"Comparison of CNN-based Speech Dereverberation using Neural Vocoder","authors":"Chanjun Chun, Kwang Myung Jeon, Chaejun Leem, Bumshik Lee, Wooyeol Choi","doi":"10.1109/ICAIIC51459.2021.9415259","DOIUrl":null,"url":null,"abstract":"Reverberation degrades the speech quality and intelligibility, particularly for hearing impaired people. In an automatic speech recognition (ASR) system, a dereverberation technique, which removes reverberation, is widely employed as a pre-processing to increase the performance of the ASR system. In this paper, we compare the performance of the CNN-based dereverberation method by applying various vocoders. The U-Net architecture is employed as the dereverberation technique. WaveGlow, MelGAN, and Griffin Lim are used as vocoders. Such vocoders play a role in converting speech features into speech samples in time domain, and are capable of generating high-quality speech from mel-spectrograms. In order to compare the results, PESQ was measured. As a result, it was confirmed that PESQ was higher than that of the reverberant speech when speech was synthesized with the reverberation removal and vocoder.","PeriodicalId":432977,"journal":{"name":"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC51459.2021.9415259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Reverberation degrades the speech quality and intelligibility, particularly for hearing impaired people. In an automatic speech recognition (ASR) system, a dereverberation technique, which removes reverberation, is widely employed as a pre-processing to increase the performance of the ASR system. In this paper, we compare the performance of the CNN-based dereverberation method by applying various vocoders. The U-Net architecture is employed as the dereverberation technique. WaveGlow, MelGAN, and Griffin Lim are used as vocoders. Such vocoders play a role in converting speech features into speech samples in time domain, and are capable of generating high-quality speech from mel-spectrograms. In order to compare the results, PESQ was measured. As a result, it was confirmed that PESQ was higher than that of the reverberant speech when speech was synthesized with the reverberation removal and vocoder.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于cnn的神经声码器语音去噪比较
混响会降低语音质量和清晰度,对听力受损的人来说尤其如此。在自动语音识别(ASR)系统中,一种消除混响的去混响技术被广泛地用作预处理,以提高自动语音识别系统的性能。在本文中,我们通过使用不同的声码器来比较基于cnn的去噪方法的性能。采用U-Net体系结构作为消噪技术。使用WaveGlow, MelGAN和Griffin Lim作为声码器。这种声码器可以在时域内将语音特征转换为语音样本,并能够从梅尔谱图中生成高质量的语音。为了比较结果,测量了PESQ。结果证实,当使用混响去除和声码器合成语音时,PESQ高于混响语音。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning to Recognize Masked Faces by Data Synthesis Bug Report Summarization using Believability Score and Text Ranking Intelligent Predictive Maintenance Model for Rolling Components of a Machine based on Speed and Vibration High-speed Optimization of User Pairing in NOMA System Using Laser Chaos Based MAB Algorithm A New Smart-Meter Data Monitoring System based on Optical Camera Communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1