Uptrendz: API-Centric Real-time Recommendations in Multi-Domain Settings

Emanuel Lacić, Tomislav Duricic, Leon Fadljevic, Dieter Theiler, Dominik Kowald
{"title":"Uptrendz: API-Centric Real-time Recommendations in Multi-Domain Settings","authors":"Emanuel Lacić, Tomislav Duricic, Leon Fadljevic, Dieter Theiler, Dominik Kowald","doi":"10.48550/arXiv.2301.01037","DOIUrl":null,"url":null,"abstract":"In this work, we tackle the problem of adapting a real-time recommender system to multiple application domains, and their underlying data models and customization requirements. To do that, we present Uptrendz, a multi-domain recommendation platform that can be customized to provide real-time recommendations in an API-centric way. We demonstrate (i) how to set up a real-time movie recommender using the popular MovieLens-100k dataset, and (ii) how to simultaneously support multiple application domains based on the use-case of recommendations in entrepreneurial start-up founding. For that, we differentiate between domains on the item- and system-level. We believe that our demonstration shows a convenient way to adapt, deploy and evaluate a recommender system in an API-centric way. The source-code and documentation that demonstrates how to utilize the configured Uptrendz API is available on GitHub.","PeriodicalId":126309,"journal":{"name":"European Conference on Information Retrieval","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Conference on Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.01037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we tackle the problem of adapting a real-time recommender system to multiple application domains, and their underlying data models and customization requirements. To do that, we present Uptrendz, a multi-domain recommendation platform that can be customized to provide real-time recommendations in an API-centric way. We demonstrate (i) how to set up a real-time movie recommender using the popular MovieLens-100k dataset, and (ii) how to simultaneously support multiple application domains based on the use-case of recommendations in entrepreneurial start-up founding. For that, we differentiate between domains on the item- and system-level. We believe that our demonstration shows a convenient way to adapt, deploy and evaluate a recommender system in an API-centric way. The source-code and documentation that demonstrates how to utilize the configured Uptrendz API is available on GitHub.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Uptrendz:多域设置中以api为中心的实时推荐
在这项工作中,我们解决了使实时推荐系统适应多个应用领域的问题,以及它们的底层数据模型和定制需求。为了做到这一点,我们提出了Uptrendz,这是一个多领域推荐平台,可以定制以api为中心的方式提供实时推荐。我们演示了(i)如何使用流行的MovieLens-100k数据集建立实时电影推荐,以及(ii)如何同时支持基于创业创业中推荐用例的多个应用领域。为此,我们在项目级和系统级上区分域。我们相信,我们的演示展示了一种以api为中心的方式来适应、部署和评估推荐系统的方便方法。演示如何使用配置好的Uptrendz API的源代码和文档可以在GitHub上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experiments in News Bias Detection with Pre-trained Neural Transformers Is Interpretable Machine Learning Effective at Feature Selection for Neural Learning-to-Rank? Two-Step SPLADE: Simple, Efficient and Effective Approximation of SPLADE Exploring the Nexus Between Retrievability and Query Generation Strategies Countering Mainstream Bias via End-to-End Adaptive Local Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1