Global sparse partial least squares

Yi Mou, Xinge You, Xiubao Jiang, Duanquan Xu, Shujian Yu
{"title":"Global sparse partial least squares","authors":"Yi Mou, Xinge You, Xiubao Jiang, Duanquan Xu, Shujian Yu","doi":"10.1109/SPAC.2014.6982713","DOIUrl":null,"url":null,"abstract":"The partial least squares (PLS) is designed for prediction problems when the number of predictors is larger than the number of training samples. PLS is based on latent components that are linear combinations of all of the original predictors, it automatically employs all predictors regardless of their relevance. This will degrade its performance and make it difficult to interpret the result. In this paper, global sparse PLS (GSPLS) is proposed to allow common variable selection in each deflation process as well as dimension reduction. We introduce the ℓ2, 1 norm to direction matrix and develop an algorithm for GSPLS via employing the Bregmen Iteration algorithm, illustrate the performance of proposed method with an analysis to red wine dataset. Numerical studies demonstrate the superiority of proposed GSPLS compared with standard PLS and other existing methods for variable selection and prediction in most of the cases.","PeriodicalId":326246,"journal":{"name":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2014.6982713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The partial least squares (PLS) is designed for prediction problems when the number of predictors is larger than the number of training samples. PLS is based on latent components that are linear combinations of all of the original predictors, it automatically employs all predictors regardless of their relevance. This will degrade its performance and make it difficult to interpret the result. In this paper, global sparse PLS (GSPLS) is proposed to allow common variable selection in each deflation process as well as dimension reduction. We introduce the ℓ2, 1 norm to direction matrix and develop an algorithm for GSPLS via employing the Bregmen Iteration algorithm, illustrate the performance of proposed method with an analysis to red wine dataset. Numerical studies demonstrate the superiority of proposed GSPLS compared with standard PLS and other existing methods for variable selection and prediction in most of the cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全局稀疏偏最小二乘
偏最小二乘(PLS)是针对预测者数量大于训练样本数量的预测问题而设计的。PLS基于所有原始预测因子的线性组合的潜在成分,它自动使用所有预测因子,而不管它们的相关性如何。这将降低其性能并使其难以解释结果。本文提出了一种全局稀疏PLS (global sparse PLS, GSPLS)方法,允许在每个压缩过程中选择共同变量并进行降维。我们将1,1,2范数引入到方向矩阵中,利用Bregmen迭代算法开发了一种GSPLS算法,并通过对红酒数据集的分析说明了该方法的性能。数值研究表明,在大多数情况下,与标准PLS和其他现有的变量选择和预测方法相比,所提出的GSPLS具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new GPR image de-nosing method based on BEMD Design and implementation of one vertical video search engine Multi-scale sparse denoising model based on non-separable wavelet Dollar bill denomination recognition algorithm based on local texture feature Class specific dictionary learning for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1