CashNet-15:An Optimized Cashew Nut Grading Using Deep CNN and Data Augmentation

A. Sivaranjani, S. Senthilrani, B. Ashokumar, A. Murugan
{"title":"CashNet-15:An Optimized Cashew Nut Grading Using Deep CNN and Data Augmentation","authors":"A. Sivaranjani, S. Senthilrani, B. Ashokumar, A. Murugan","doi":"10.1109/ICSCAN.2019.8878725","DOIUrl":null,"url":null,"abstract":"Since there is a great demand for the quality of agricultural products in the global market. It is very important to improve the quality and standards of agricultural products to competent in the business world. Furthermore cashew is a significant produce in India as well as it takes the major part in the global export market for cashew nut. But the most of the methods proposed for grading system is wouldn’t reach the better accuracy. Hence to improve the performance, we proposed the optimized cashew nut grading using Deep CNN and Data augmentation. This CashNet-15 work consists of totally 15 layers of CNN. Here we used 8 convolution layer and 4 Max-poolong layer for feature extraction and remaining are 1 fully connected layer, 1activation function and 1dropout layer. To attain the better performance we used data augmentation methods. To optimize the network, hyperparameter like SGD with Beta momentum and Leaky rectified linear unit was used to reduce the loss function and to obtain the non-linear property.","PeriodicalId":363880,"journal":{"name":"2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN)","volume":"596 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCAN.2019.8878725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Since there is a great demand for the quality of agricultural products in the global market. It is very important to improve the quality and standards of agricultural products to competent in the business world. Furthermore cashew is a significant produce in India as well as it takes the major part in the global export market for cashew nut. But the most of the methods proposed for grading system is wouldn’t reach the better accuracy. Hence to improve the performance, we proposed the optimized cashew nut grading using Deep CNN and Data augmentation. This CashNet-15 work consists of totally 15 layers of CNN. Here we used 8 convolution layer and 4 Max-poolong layer for feature extraction and remaining are 1 fully connected layer, 1activation function and 1dropout layer. To attain the better performance we used data augmentation methods. To optimize the network, hyperparameter like SGD with Beta momentum and Leaky rectified linear unit was used to reduce the loss function and to obtain the non-linear property.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CashNet-15:使用深度CNN和数据增强的优化腰果分级
由于全球市场对农产品质量的需求很大。提高农产品的质量和标准对于在商业世界中具有竞争力是非常重要的。此外,腰果在印度是一种重要的农产品,在全球腰果出口市场上占有重要地位。但目前提出的大多数分级方法都不能达到较好的准确率。因此,为了提高性能,我们提出了使用深度CNN和数据增强的优化腰果分级方法。这个CashNet-15作品由15层CNN组成。这里我们使用8个卷积层和4个Max-poolong层进行特征提取,剩下1个完全连接层,1个激活函数层和1个dropout层。为了获得更好的性能,我们使用了数据增强方法。为了对网络进行优化,采用了具有Beta动量的SGD等超参数和Leaky整流线性单元来减小损失函数,获得网络的非线性特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Security Analytics For Heterogeneous Web Pipeline Gas Leakage Detection And Location Identification System IoT Enabled Forest Fire Detection and Early Warning System Research opportunities on virtual reality and augmented reality: a survey Performance Analysis of Hub BLDC Motor Using Finite Element Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1