Mining Large Networks with Subgraph Counting

Ilaria Bordino, D. Donato, A. Gionis, S. Leonardi
{"title":"Mining Large Networks with Subgraph Counting","authors":"Ilaria Bordino, D. Donato, A. Gionis, S. Leonardi","doi":"10.1109/ICDM.2008.109","DOIUrl":null,"url":null,"abstract":"The problem of mining frequent patterns in networks has many applications, including analysis of complex networks, clustering of graphs, finding communities in social networks, and indexing of graphical and biological databases. Despite this wealth of applications, the current state of the art lacks algorithmic tools for counting the number of subgraphs contained in a large network. In this paper we develop data-stream algorithms that approximate the number of all subgraphs of three and four vertices in directed and undirected networks. We use the frequency of occurrence of all subgraphs to prove their significance in order to characterize different kinds of networks: we achieve very good precision in clustering networks with similar structure. The significance of our method is supported by the fact that such high precision cannot be achieved when performing clustering based on simpler topological properties, such as degree, assortativity, and eigenvector distributions. We have also tested our techniques using swap randomization.","PeriodicalId":252958,"journal":{"name":"2008 Eighth IEEE International Conference on Data Mining","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2008.109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

Abstract

The problem of mining frequent patterns in networks has many applications, including analysis of complex networks, clustering of graphs, finding communities in social networks, and indexing of graphical and biological databases. Despite this wealth of applications, the current state of the art lacks algorithmic tools for counting the number of subgraphs contained in a large network. In this paper we develop data-stream algorithms that approximate the number of all subgraphs of three and four vertices in directed and undirected networks. We use the frequency of occurrence of all subgraphs to prove their significance in order to characterize different kinds of networks: we achieve very good precision in clustering networks with similar structure. The significance of our method is supported by the fact that such high precision cannot be achieved when performing clustering based on simpler topological properties, such as degree, assortativity, and eigenvector distributions. We have also tested our techniques using swap randomization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用子图计数挖掘大型网络
挖掘网络中频繁模式的问题有许多应用,包括复杂网络的分析、图的聚类、在社交网络中寻找社区以及图形和生物数据库的索引。尽管有如此丰富的应用程序,但目前的技术状况缺乏用于计算大型网络中包含的子图数量的算法工具。在本文中,我们开发了数据流算法来近似有向网络和无向网络中三个顶点和四个顶点的所有子图的数量。我们使用所有子图的出现频率来证明它们的重要性,以表征不同类型的网络:我们在具有相似结构的聚类网络中获得了非常好的精度。当基于更简单的拓扑属性(如度、分类和特征向量分布)进行聚类时,无法实现如此高的精度,这一事实支持了我们方法的重要性。我们还使用交换随机化测试了我们的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SeqStream: Mining Closed Sequential Patterns over Stream Sliding Windows Support Vector Regression for Censored Data (SVRc): A Novel Tool for Survival Analysis A Probability Model for Projective Clustering on High Dimensional Data Text Cube: Computing IR Measures for Multidimensional Text Database Analysis A Hierarchical Algorithm for Clustering Uncertain Data via an Information-Theoretic Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1