Xianyang Gao, F. Podd, W. van Verre, D. Daniels, Yee M. Tan, A. Peyton
{"title":"Simulation of Ground Penetrating Radar for Anti-personnel Landmine Detection","authors":"Xianyang Gao, F. Podd, W. van Verre, D. Daniels, Yee M. Tan, A. Peyton","doi":"10.1109/ICGPR.2018.8441564","DOIUrl":null,"url":null,"abstract":"Ground Penetrating Radar (GPR) is an important non-destructive tool to detect landmines. It radiates radar pulses to probe the ground that contains a variety of media, including landmine, sand, soil, clay, water, etc. and a large number of clutter items like burrows, cracks, discarded waste, branches and roots, metal wire, and so on. The subsurface is in such a complex and unidentified condition, that it will impact the performance of the GPR system considerably. This brings a big challenge for the system developers to control and understand the GPR system, especially during the early stage of the design. Therefore, a simpler and less time-consuming simulation method for GPR than the real-field test is essential for engineers to have an overview and a clear grasp of the whole GPR system. This paper uses gprMax, an open-source software using the Finite-Difference Time-Domain (FDTD) method, to explore the parameter tradeoffs for a transmitter-receiver pair of bowtie antennas operating at different spacing and heights above the ground for target at different depths.","PeriodicalId":269482,"journal":{"name":"2018 17th International Conference on Ground Penetrating Radar (GPR)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th International Conference on Ground Penetrating Radar (GPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGPR.2018.8441564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Ground Penetrating Radar (GPR) is an important non-destructive tool to detect landmines. It radiates radar pulses to probe the ground that contains a variety of media, including landmine, sand, soil, clay, water, etc. and a large number of clutter items like burrows, cracks, discarded waste, branches and roots, metal wire, and so on. The subsurface is in such a complex and unidentified condition, that it will impact the performance of the GPR system considerably. This brings a big challenge for the system developers to control and understand the GPR system, especially during the early stage of the design. Therefore, a simpler and less time-consuming simulation method for GPR than the real-field test is essential for engineers to have an overview and a clear grasp of the whole GPR system. This paper uses gprMax, an open-source software using the Finite-Difference Time-Domain (FDTD) method, to explore the parameter tradeoffs for a transmitter-receiver pair of bowtie antennas operating at different spacing and heights above the ground for target at different depths.