Application of proximal support vector regression to particle filter

Wei Jiang, G. Yi, Qingshuang Zeng
{"title":"Application of proximal support vector regression to particle filter","authors":"Wei Jiang, G. Yi, Qingshuang Zeng","doi":"10.1109/ICICISYS.2009.5357867","DOIUrl":null,"url":null,"abstract":"An improved particle filter for nonlinear, non-Gaussian estimation is proposed in this paper. The algorithm consists of a particle filter that uses a proximal support vector regression (PSVR) based re-weighting scheme to re-approximate the posterior density and avoid sample impoverishment. A regression function is obtained by PSVR over the weighted sample set and each sample is re-weighted via this function. Then, posterior density of the state is re-approximated to maintain the effectiveness and diversity of samples. Two experimental results demonstrate that the efficiency of the proposed algorithm compared with the generic particle filter and Markov Chain Monte Carlo (MCMC) particle filter.","PeriodicalId":206575,"journal":{"name":"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICISYS.2009.5357867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

An improved particle filter for nonlinear, non-Gaussian estimation is proposed in this paper. The algorithm consists of a particle filter that uses a proximal support vector regression (PSVR) based re-weighting scheme to re-approximate the posterior density and avoid sample impoverishment. A regression function is obtained by PSVR over the weighted sample set and each sample is re-weighted via this function. Then, posterior density of the state is re-approximated to maintain the effectiveness and diversity of samples. Two experimental results demonstrate that the efficiency of the proposed algorithm compared with the generic particle filter and Markov Chain Monte Carlo (MCMC) particle filter.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
近端支持向量回归在粒子滤波中的应用
提出了一种用于非线性非高斯估计的改进粒子滤波方法。该算法由一个粒子滤波器组成,该滤波器使用基于近端支持向量回归(PSVR)的重加权方案来重新逼近后验密度并避免样本贫困化。通过对加权样本集的PSVR得到回归函数,并通过该函数对每个样本进行重新加权。然后,重新近似状态的后验密度,以保持样本的有效性和多样性。两个实验结果表明,与一般粒子滤波和马尔可夫链蒙特卡罗(MCMC)粒子滤波相比,该算法的效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic algorithm for the one-commodity pickup-and-delivery vehicle routing problem An intelligent model selection scheme based on particle swarm optimization A novel blind watermark algorithm based On SVD and DCT Optimization of machining parameters using estimation of distribution algorithms Optimal control analysis on a class of hybrid systems with impulses and switches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1