Sea ice strength development from freezing to melting in the Antarctic marginal ice zone

F. Paul, T. Mielke, R. Audh, D. Lupascu
{"title":"Sea ice strength development from freezing to melting in the Antarctic marginal ice zone","authors":"F. Paul, T. Mielke, R. Audh, D. Lupascu","doi":"10.4995/yic2021.2021.12249","DOIUrl":null,"url":null,"abstract":"Sea ice growth in the Marginal Ice Zone of the Antarctic is one of the largest annual changes on earth with a huge impact on the global climate and ecology system. The principles of sea ice growth and melting in the MIZ of the Antarctic is yet not as well researched as its polar counterpart in the north.For this study, pancake ice, consolidated ice and floe ice were analyzed with a compression test in July, October and November 2019 in the marginal ice zone of the Antarctic. Newly formed pancake ice in July showed the highest compressive strength in the bottom layer (3 MPa), whereas consolidated ice was strongest at the top (5 MPa). Consolidated ice in October and November had the highest compressive strength in a middle layer with up to 13.5 MPa, the maximum strength at the top was 3 MPa. Floe ice, consisting of destroyed pack ice, did not show a clear strength development over sea ice depth.","PeriodicalId":406819,"journal":{"name":"Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/yic2021.2021.12249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sea ice growth in the Marginal Ice Zone of the Antarctic is one of the largest annual changes on earth with a huge impact on the global climate and ecology system. The principles of sea ice growth and melting in the MIZ of the Antarctic is yet not as well researched as its polar counterpart in the north.For this study, pancake ice, consolidated ice and floe ice were analyzed with a compression test in July, October and November 2019 in the marginal ice zone of the Antarctic. Newly formed pancake ice in July showed the highest compressive strength in the bottom layer (3 MPa), whereas consolidated ice was strongest at the top (5 MPa). Consolidated ice in October and November had the highest compressive strength in a middle layer with up to 13.5 MPa, the maximum strength at the top was 3 MPa. Floe ice, consisting of destroyed pack ice, did not show a clear strength development over sea ice depth.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
南极边缘冰带海冰强度从冻结到融化的发展
南极边缘冰带的海冰增长是地球上最大的年度变化之一,对全球气候和生态系统产生巨大影响。南极MIZ地区海冰生长和融化的原理还没有像北极地区那样得到充分的研究。本研究于2019年7月、10月和11月对南极边缘冰带的煎饼冰、固结冰和浮冰进行了压缩试验分析。7月新形成的煎饼冰底部抗压强度最高(3 MPa),顶部固结冰最强(5 MPa)。10月和11月固结冰中层抗压强度最高,达13.5 MPa,顶层最大为3 MPa。由被破坏的浮冰组成的浮冰在海冰深度上没有显示出明显的强度发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Finite Element Simulation and Comparison of Piezoelectric Vibration-Based Energy Harvesters with Advanced Electric Circuits An adaptive discrete Newton method for regularization-free Bingham model Block strategies to compute the lambda modes associated with the neutron diffusion equation A Space-Time FE Level-set method for convection coupled phase-change processes Monolithic Newton-Multigrid Solver for Multiphase Flow Problems with Surface Tension
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1