Direct torque control of Induction Motor based on artificial neural networks speed control using MRAS and neural PID controller

M. L. Zegai, M. Bendjebbar, K. Belhadri, M. Doumbia, B. Hamane, P. M. Koumba
{"title":"Direct torque control of Induction Motor based on artificial neural networks speed control using MRAS and neural PID controller","authors":"M. L. Zegai, M. Bendjebbar, K. Belhadri, M. Doumbia, B. Hamane, P. M. Koumba","doi":"10.1109/EPEC.2015.7379970","DOIUrl":null,"url":null,"abstract":"This contribution deals with the proposal of direct torque control (DTC) for Induction Motor (IM) with the use of artificial neural networks (ANN) to increase the system's performance. Model Reference Adaptive System (MRAS) method is used for the estimation and regulation of rotor's speed. The whole structure of DTC is designed by Matlab/Simulink. The neural controller is designed using neural Toolbox, and the system's performance is compared with conventional DTC.","PeriodicalId":231255,"journal":{"name":"2015 IEEE Electrical Power and Energy Conference (EPEC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Electrical Power and Energy Conference (EPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEC.2015.7379970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This contribution deals with the proposal of direct torque control (DTC) for Induction Motor (IM) with the use of artificial neural networks (ANN) to increase the system's performance. Model Reference Adaptive System (MRAS) method is used for the estimation and regulation of rotor's speed. The whole structure of DTC is designed by Matlab/Simulink. The neural controller is designed using neural Toolbox, and the system's performance is compared with conventional DTC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的异步电动机直接转矩控制采用MRAS和神经PID控制器进行速度控制
这篇文章讨论了利用人工神经网络(ANN)来提高感应电机(IM)直接转矩控制(DTC)系统性能的建议。采用模型参考自适应系统(MRAS)方法对转子转速进行估计和调节。采用Matlab/Simulink设计了DTC的整体结构。利用神经工具箱设计了神经控制器,并与传统的直接转矩控制系统进行了性能比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison between numerical and analytical methods of AC resistance evaluation for Medium Frequency Transformers: Validation on a prototype Improved control strategy of full-bridge modular multilevel converter Appliance scheduling optimization in smart home networks comprising of smart appliances and a photovoltaic panel Dynamic Reactive Power Compensation for voltage support using Static VAR Compensator (SVC) In Saudi Arabia Observability analysis of power systems in the presence of hybrid measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1