Machine Learning approach for Predictive Maintenance in Industry 4.0

M. Paolanti, L. Romeo, Andrea Felicetti, A. Mancini, E. Frontoni, J. Loncarski
{"title":"Machine Learning approach for Predictive Maintenance in Industry 4.0","authors":"M. Paolanti, L. Romeo, Andrea Felicetti, A. Mancini, E. Frontoni, J. Loncarski","doi":"10.1109/MESA.2018.8449150","DOIUrl":null,"url":null,"abstract":"Condition monitoring together with predictive maintenance of electric motors and other equipment used by the industry avoids severe economic losses resulting from unexpected motor failures and greatly improves the system reliability. This paper describes a Machine Learning architecture for Predictive Maintenance, based on Random Forest approach. The system was tested on a real industry example, by developing the data collection and data system analysis, applying the Machine Learning approach and comparing it to the simulation tool analysis. Data has been collected by various sensors, machine PLCs and communication protocols and made available to Data Analysis Tool on the Azure Cloud architecture. Preliminary results show a proper behavior of the approach on predicting different machine states with high accuracy.","PeriodicalId":138936,"journal":{"name":"2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","volume":"359 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"98","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MESA.2018.8449150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 98

Abstract

Condition monitoring together with predictive maintenance of electric motors and other equipment used by the industry avoids severe economic losses resulting from unexpected motor failures and greatly improves the system reliability. This paper describes a Machine Learning architecture for Predictive Maintenance, based on Random Forest approach. The system was tested on a real industry example, by developing the data collection and data system analysis, applying the Machine Learning approach and comparing it to the simulation tool analysis. Data has been collected by various sensors, machine PLCs and communication protocols and made available to Data Analysis Tool on the Azure Cloud architecture. Preliminary results show a proper behavior of the approach on predicting different machine states with high accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工业4.0中预测性维护的机器学习方法
对电机和行业使用的其他设备进行状态监测和预测性维护,避免了电机意外故障造成的严重经济损失,大大提高了系统的可靠性。本文描述了一种基于随机森林方法的预测性维护机器学习体系结构。通过开发数据收集和数据系统分析,应用机器学习方法并将其与仿真工具分析进行比较,在实际工业实例上对系统进行了测试。数据由各种传感器、机器plc和通信协议收集,并提供给Azure云架构上的数据分析工具。初步结果表明,该方法对不同的机器状态有较好的预测效果,具有较高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The sensing technology of applying the acoustic emission sensor to the grinding wheel loading phenomenon Lateral control approach of powered parafoils combining wind feedforward compensation with active disturbance rejection control Effects of DAC interpolation on the dynamics of a high speed linear actuator Wearable Device to Record Hand Motions based on EMG and Visual Information A Smooth Traction Control Design for Two-Wheeled electric vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1