GLAF: A Visual Programming and Auto-tuning Framework for Parallel Computing

K. Krommydas, Ruchira Sasanka, Wu-chun Feng
{"title":"GLAF: A Visual Programming and Auto-tuning Framework for Parallel Computing","authors":"K. Krommydas, Ruchira Sasanka, Wu-chun Feng","doi":"10.1109/ICPP.2015.95","DOIUrl":null,"url":null,"abstract":"The past decade's computing revolution has delivered parallel hardware to the masses. However, the ability to exploit its capabilities and ignite scientific breakthrough at a proportionate level remains a challenge due to the lack of parallel programming expertise. Although different solutions have been proposed to facilitate harvesting the seeds of parallel computing, most target seasoned programmers and ignore the special nature of a target audience like domain experts. This paper addresses the challenge of realizing a programming abstraction and implementing an integrated development framework for this audience. We present GLAF -- a grid-based language and auto-parallelizing, auto-tuning framework. Its key elements are its intuitive visual programming interface, which attempts to render expressing and validating an algorithm easier for domain experts, and its ability to automatically generate efficient serial and parallel Fortran and C code, including potentially beneficial code modifications (e.g., With respect to data layout). We find that the above features assist novice programmers to avoid common programming pitfalls and provide fast implementations.","PeriodicalId":423007,"journal":{"name":"2015 44th International Conference on Parallel Processing","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 44th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2015.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The past decade's computing revolution has delivered parallel hardware to the masses. However, the ability to exploit its capabilities and ignite scientific breakthrough at a proportionate level remains a challenge due to the lack of parallel programming expertise. Although different solutions have been proposed to facilitate harvesting the seeds of parallel computing, most target seasoned programmers and ignore the special nature of a target audience like domain experts. This paper addresses the challenge of realizing a programming abstraction and implementing an integrated development framework for this audience. We present GLAF -- a grid-based language and auto-parallelizing, auto-tuning framework. Its key elements are its intuitive visual programming interface, which attempts to render expressing and validating an algorithm easier for domain experts, and its ability to automatically generate efficient serial and parallel Fortran and C code, including potentially beneficial code modifications (e.g., With respect to data layout). We find that the above features assist novice programmers to avoid common programming pitfalls and provide fast implementations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并行计算的可视化编程和自动调优框架
过去十年的计算革命为大众带来了并行硬件。然而,由于缺乏并行编程专业知识,利用其能力并在一定程度上引发科学突破的能力仍然是一个挑战。尽管已经提出了不同的解决方案来促进收获并行计算的种子,但大多数解决方案都针对经验丰富的程序员,而忽略了目标受众(如领域专家)的特殊性质。本文解决了为这些受众实现编程抽象和实现集成开发框架的挑战。我们提出了GLAF——一种基于网格的语言和自动并行、自动调优框架。它的关键元素是其直观的可视化编程界面,它试图为领域专家更容易地表达和验证算法,以及它自动生成有效的串行和并行Fortran和C代码的能力,包括潜在有益的代码修改(例如,关于数据布局)。我们发现上述特性有助于新手程序员避免常见的编程陷阱并提供快速实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Elastic and Efficient Virtual Network Provisioning for Cloud-Based Multi-tier Applications Design and Implementation of a Highly Efficient DGEMM for 64-Bit ARMv8 Multi-core Processors Leveraging Error Compensation to Minimize Time Deviation in Parallel Multi-core Simulations Crowdsourcing Sensing Workloads of Heterogeneous Tasks: A Distributed Fairness-Aware Approach TAPS: Software Defined Task-Level Deadline-Aware Preemptive Flow Scheduling in Data Centers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1