Decision Calibration Network for Semantic Labeling of High-Resolution Remote Sensing Images

Haiwei Bai, Jian Chen, Q. Wang, Changtao He
{"title":"Decision Calibration Network for Semantic Labeling of High-Resolution Remote Sensing Images","authors":"Haiwei Bai, Jian Chen, Q. Wang, Changtao He","doi":"10.1109/ICGMRS55602.2022.9849228","DOIUrl":null,"url":null,"abstract":"Semantic labeling of high-resolution remote sensing images is a challenging task, requiring the models to effectively distinguish different classes of ground objects while learning advanced feature representations. First of all, we propose a dual-decoder semantic labeling neural network based on the atrous spatial pyramid pooling module and attention mechanism to achieve the high-precision classification of different ground objects. The main idea is to enhance the high-level feature representation by using the complementary relationship that may exist between different decoders. Furthermore, based on this network structure, a decision calibration auxiliary loss is proposed to improve the models’s ability to classify examples of highly ambiguous output by different decoders. Finally, we conduct experimental verification on the ISPRS Vaihingen and Potsdam datasets, and the results show that the auxiliary loss can effectively improve the classification accuracy of the model.","PeriodicalId":129909,"journal":{"name":"2022 3rd International Conference on Geology, Mapping and Remote Sensing (ICGMRS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd International Conference on Geology, Mapping and Remote Sensing (ICGMRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGMRS55602.2022.9849228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Semantic labeling of high-resolution remote sensing images is a challenging task, requiring the models to effectively distinguish different classes of ground objects while learning advanced feature representations. First of all, we propose a dual-decoder semantic labeling neural network based on the atrous spatial pyramid pooling module and attention mechanism to achieve the high-precision classification of different ground objects. The main idea is to enhance the high-level feature representation by using the complementary relationship that may exist between different decoders. Furthermore, based on this network structure, a decision calibration auxiliary loss is proposed to improve the models’s ability to classify examples of highly ambiguous output by different decoders. Finally, we conduct experimental verification on the ISPRS Vaihingen and Potsdam datasets, and the results show that the auxiliary loss can effectively improve the classification accuracy of the model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高分辨率遥感图像语义标注决策标定网络
高分辨率遥感图像的语义标注是一项具有挑战性的任务,需要模型在学习高级特征表示的同时有效区分不同类别的地物。首先,提出一种基于空间金字塔池化模块和关注机制的双解码器语义标注神经网络,实现不同地物的高精度分类;主要思想是利用不同解码器之间可能存在的互补关系来增强高级特征表示。此外,基于该网络结构,提出了一种决策校准辅助损失,以提高模型对不同解码器的高模糊输出样本的分类能力。最后,我们在ISPRS Vaihingen和Potsdam数据集上进行了实验验证,结果表明辅助损失可以有效地提高模型的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on UAV remote sensing multispectral image compression based on CNN MDNet: A Multi-modal Dual Branch Road Extraction Network Using Infrared Information Quantitative Evaluation of Digital Orthophoto Map Influence of shallow ocean front on propagation characteristics of low frequency sound energy flow Application of GA-BP neural network in prediction of chl-a concentration in Wuliangsu Lake
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1