A new method for gait recognition with 2D pose estimation

Han Yan, Y. Piao, Xiunan Li
{"title":"A new method for gait recognition with 2D pose estimation","authors":"Han Yan, Y. Piao, Xiunan Li","doi":"10.1117/12.2639153","DOIUrl":null,"url":null,"abstract":"This paper proposes a new model-based gait recognition method. Different from other methods using 3D (3-dimensional) keypoint information and skeleton information, we directly stack the 2D (2-dimensional) keypoint heatmaps in the gait sequence in the time dimension, and input it into the network structure based on 3D-CNN (3-dimensional-convolutional neural network). Then, through the gait analysis on the two dimensions of time and space, the effective gait features are finally obtained. Compared with other model-based methods, this method is more clear, concise and elegant in the process of feature extraction. The test of CASIA-B dataset shows that in the model-based gait recognition method, we have competitive performance.","PeriodicalId":336892,"journal":{"name":"Neural Networks, Information and Communication Engineering","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks, Information and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2639153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a new model-based gait recognition method. Different from other methods using 3D (3-dimensional) keypoint information and skeleton information, we directly stack the 2D (2-dimensional) keypoint heatmaps in the gait sequence in the time dimension, and input it into the network structure based on 3D-CNN (3-dimensional-convolutional neural network). Then, through the gait analysis on the two dimensions of time and space, the effective gait features are finally obtained. Compared with other model-based methods, this method is more clear, concise and elegant in the process of feature extraction. The test of CASIA-B dataset shows that in the model-based gait recognition method, we have competitive performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于二维姿态估计的步态识别新方法
提出了一种新的基于模型的步态识别方法。与其他使用3D(三维)关键点信息和骨骼信息的方法不同,我们直接将步态序列中的2D(二维)关键点热图在时间维度上叠加,并基于3D- cnn(三维卷积神经网络)将其输入到网络结构中。然后,通过对时间和空间两个维度的步态分析,最终得到有效的步态特征。与其他基于模型的方法相比,该方法在特征提取过程中更加清晰、简洁、优雅。CASIA-B数据集的测试表明,基于模型的步态识别方法具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improve vulnerability prediction performance using self-attention mechanism and convolutional neural network Design of digital pulse-position modulation system based on minimum distance method Design of an externally adjustable oscillator circuit Research on non-intrusive video capture technology based on FPD-linkⅢ The communication process of digital binary pulse-position modulation with additive white Gaussian noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1