Meta-Personalizing Vision-Language Models to Find Named Instances in Video

Chun-Hsiao Yeh, Bryan C. Russell, Josef Sivic, Fabian Caba Heilbron, S. Jenni
{"title":"Meta-Personalizing Vision-Language Models to Find Named Instances in Video","authors":"Chun-Hsiao Yeh, Bryan C. Russell, Josef Sivic, Fabian Caba Heilbron, S. Jenni","doi":"10.1109/CVPR52729.2023.01833","DOIUrl":null,"url":null,"abstract":"Large-scale vision-language models (VLM) have shown impressive results for language-guided search applications. While these models allow category-level queries, they currently struggle with personalized searches for moments in a video where a specific object instance such as “My dog Biscuit” appears. We present the following three contributions to address this problem. First, we describe a method to meta-personalize a pre-trained VLM, i.e., learning how to learn to personalize a VLM at test time to search in video. Our method extends the VLM's token vocabulary by learning novel word embeddings specific to each instance. To capture only instance-specific features, we represent each instance embedding as a combination of shared and learned global category features. Second, we propose to learn such personalization without explicit human supervision. Our approach automatically identifies moments of named visual instances in video using transcripts and vision-language similarity in the VLM's embedding space. Finally, we introduce This-Is-My, a personal video instance retrieval benchmark. We evaluate our approach on This-Is-My and Deep-Fashion2 and show that we obtain a 15% relative improvement over the state of the art on the latter dataset.","PeriodicalId":376416,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52729.2023.01833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Large-scale vision-language models (VLM) have shown impressive results for language-guided search applications. While these models allow category-level queries, they currently struggle with personalized searches for moments in a video where a specific object instance such as “My dog Biscuit” appears. We present the following three contributions to address this problem. First, we describe a method to meta-personalize a pre-trained VLM, i.e., learning how to learn to personalize a VLM at test time to search in video. Our method extends the VLM's token vocabulary by learning novel word embeddings specific to each instance. To capture only instance-specific features, we represent each instance embedding as a combination of shared and learned global category features. Second, we propose to learn such personalization without explicit human supervision. Our approach automatically identifies moments of named visual instances in video using transcripts and vision-language similarity in the VLM's embedding space. Finally, we introduce This-Is-My, a personal video instance retrieval benchmark. We evaluate our approach on This-Is-My and Deep-Fashion2 and show that we obtain a 15% relative improvement over the state of the art on the latter dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在视频中查找命名实例的元个性化视觉语言模型
大规模视觉语言模型(VLM)在语言引导搜索应用中已经显示出令人印象深刻的结果。虽然这些模型允许类别级查询,但它们目前在视频中出现特定对象实例(如“我的狗饼干”)的时刻进行个性化搜索时遇到了困难。我们提出以下三个贡献来解决这个问题。首先,我们描述了一种对预训练的VLM进行元个性化的方法,即学习如何在测试时对VLM进行个性化以在视频中搜索。我们的方法通过学习特定于每个实例的新单词嵌入来扩展VLM的标记词汇表。为了只捕获特定于实例的特征,我们将每个实例嵌入表示为共享和学习的全局类别特征的组合。其次,我们建议在没有明确人类监督的情况下学习这种个性化。我们的方法使用VLM嵌入空间中的转录和视觉语言相似性来自动识别视频中命名的视觉实例的时刻。最后,我们介绍了一个个人视频实例检索基准。我们在This-Is-My和Deep-Fashion2上评估了我们的方法,并表明我们在后者数据集上获得了15%的相对改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
L-CoIns: Language-based Colorization With Instance Awareness Neural Texture Synthesis with Guided Correspondence LOGO: A Long-Form Video Dataset for Group Action Quality Assessment ERM-KTP: Knowledge-Level Machine Unlearning via Knowledge Transfer Target-referenced Reactive Grasping for Dynamic Objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1