Motivational Exploration of Explanations in Industrial Analytics*

Valentin Grimm, Jonas Potthast, J. Rubart
{"title":"Motivational Exploration of Explanations in Industrial Analytics*","authors":"Valentin Grimm, Jonas Potthast, J. Rubart","doi":"10.1109/INDIN51400.2023.10217864","DOIUrl":null,"url":null,"abstract":"Explainable AI (XAI) provides approaches and techniques for building trust in AI models. This paper presents and explores XAI approaches focusing on user interface concepts in predictive maintenance. The underlying AI model is based on an open dataset for wind turbines. An enhanced multi-class self-conceived labeling strategy improves the model and, thus, supports the XAI approaches. Previous research in user-centered XAI shows that users do not exploit the possibilities of XAI methods and instead rely on their intuition. To counter this tendency, we present user interfaces incorporating gamification elements to enhance understanding of AI outputs. We highlight our approach via two examples, demonstrating a local and a global XAI technique respectively. A preliminary user study was conducted to assess the value added by these gamification aspects. While the findings were inconclusive, they provided an initial insight into the potential of these design elements to foster user engagement in the realm of XAI.","PeriodicalId":174443,"journal":{"name":"2023 IEEE 21st International Conference on Industrial Informatics (INDIN)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 21st International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN51400.2023.10217864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Explainable AI (XAI) provides approaches and techniques for building trust in AI models. This paper presents and explores XAI approaches focusing on user interface concepts in predictive maintenance. The underlying AI model is based on an open dataset for wind turbines. An enhanced multi-class self-conceived labeling strategy improves the model and, thus, supports the XAI approaches. Previous research in user-centered XAI shows that users do not exploit the possibilities of XAI methods and instead rely on their intuition. To counter this tendency, we present user interfaces incorporating gamification elements to enhance understanding of AI outputs. We highlight our approach via two examples, demonstrating a local and a global XAI technique respectively. A preliminary user study was conducted to assess the value added by these gamification aspects. While the findings were inconclusive, they provided an initial insight into the potential of these design elements to foster user engagement in the realm of XAI.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工业分析中解释的动机探索*
可解释的人工智能(XAI)提供了在人工智能模型中建立信任的方法和技术。本文介绍并探讨了预测性维护中关注用户界面概念的XAI方法。底层的人工智能模型基于风力涡轮机的开放数据集。一个增强的多类自定义标签策略改进了模型,从而支持XAI方法。先前对以用户为中心的XAI的研究表明,用户不会利用XAI方法的可能性,而是依赖于他们的直觉。为了对抗这种趋势,我们呈现了包含游戏化元素的用户界面,以增强对AI输出的理解。我们通过两个例子来强调我们的方法,分别演示了本地和全局XAI技术。我们进行了一项初步的用户研究,以评估这些游戏化方面所增加的价值。虽然这些发现还没有定论,但它们提供了这些设计元素在XAI领域促进用户参与的潜力的初步见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical Debt Management in Industrial ML - State of Practice and Management Model Proposal Measuring the Robustness of ML Models Against Data Quality Issues in Industrial Time Series Data 5G packet delay considerations for different 5G-TSN communication scenarios Non-Interventional Precise TC Assessment for Enhancing Consumer Energy Flexibility Model-based Automation of TSN Configuration for Industrial Distributed Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1