SoK: General Purpose Compilers for Secure Multi-Party Computation

Marcella Hastings, B. Hemenway, D. Noble, S. Zdancewic
{"title":"SoK: General Purpose Compilers for Secure Multi-Party Computation","authors":"Marcella Hastings, B. Hemenway, D. Noble, S. Zdancewic","doi":"10.1109/SP.2019.00028","DOIUrl":null,"url":null,"abstract":"Secure multi-party computation (MPC) allows a group of mutually distrustful parties to compute a joint function on their inputs without revealing any information beyond the result of the computation. This type of computation is extremely powerful and has wide-ranging applications in academia, industry, and government. Protocols for secure computation have existed for decades, but only recently have general-purpose compilers for executing MPC on arbitrary functions been developed. These projects rapidly improved the state of the art, and began to make MPC accessible to non-expert users. However, the field is changing so rapidly that it is difficult even for experts to keep track of the varied capabilities of modern frameworks. In this work, we survey general-purpose compilers for secure multi-party computation. These tools provide high-level abstractions to describe arbitrary functions and execute secure computation protocols. We consider eleven systems: EMP-toolkit, Obliv-C, ObliVM, TinyGarble, SCALE-MAMBA (formerly SPDZ), Wysteria, Sharemind, PICCO, ABY, Frigate and CBMC-GC. We evaluate these systems on a range of criteria, including language expressibility, capabilities of the cryptographic back-end, and accessibility to developers. We advocate for improved documentation of MPC frameworks, standardization within the community, and make recommendations for future directions in compiler development. Installing and running these systems can be challenging, and for each system, we also provide a complete virtual environment (Docker container) with all the necessary dependencies to run the compiler and our example programs.","PeriodicalId":272713,"journal":{"name":"2019 IEEE Symposium on Security and Privacy (SP)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"118","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP.2019.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 118

Abstract

Secure multi-party computation (MPC) allows a group of mutually distrustful parties to compute a joint function on their inputs without revealing any information beyond the result of the computation. This type of computation is extremely powerful and has wide-ranging applications in academia, industry, and government. Protocols for secure computation have existed for decades, but only recently have general-purpose compilers for executing MPC on arbitrary functions been developed. These projects rapidly improved the state of the art, and began to make MPC accessible to non-expert users. However, the field is changing so rapidly that it is difficult even for experts to keep track of the varied capabilities of modern frameworks. In this work, we survey general-purpose compilers for secure multi-party computation. These tools provide high-level abstractions to describe arbitrary functions and execute secure computation protocols. We consider eleven systems: EMP-toolkit, Obliv-C, ObliVM, TinyGarble, SCALE-MAMBA (formerly SPDZ), Wysteria, Sharemind, PICCO, ABY, Frigate and CBMC-GC. We evaluate these systems on a range of criteria, including language expressibility, capabilities of the cryptographic back-end, and accessibility to developers. We advocate for improved documentation of MPC frameworks, standardization within the community, and make recommendations for future directions in compiler development. Installing and running these systems can be challenging, and for each system, we also provide a complete virtual environment (Docker container) with all the necessary dependencies to run the compiler and our example programs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
安全多方计算的通用编译器
安全多方计算(MPC)允许一组相互不信任的各方在其输入的基础上计算联合函数,而不泄露计算结果之外的任何信息。这种类型的计算非常强大,在学术界、工业界和政府中有着广泛的应用。用于安全计算的协议已经存在了几十年,但直到最近才开发出用于在任意函数上执行MPC的通用编译器。这些项目迅速提高了技术水平,并开始向非专业用户开放MPC。然而,该领域变化如此之快,以至于即使是专家也很难跟踪现代框架的各种功能。在这项工作中,我们概述了用于安全多方计算的通用编译器。这些工具提供高级抽象来描述任意函数和执行安全计算协议。我们考虑了11个系统:EMP-toolkit、Obliv-C、ObliVM、TinyGarble、SCALE-MAMBA(以前的SPDZ)、Wysteria、Sharemind、PICCO、ABY、Frigate和CBMC-GC。我们根据一系列标准评估这些系统,包括语言可表达性、加密后端功能和开发人员的可访问性。我们提倡改进MPC框架的文档、社区内的标准化,并对编译器开发的未来方向提出建议。安装和运行这些系统可能具有挑战性,对于每个系统,我们还提供了一个完整的虚拟环境(Docker容器),其中包含运行编译器和示例程序所需的所有依赖项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The 9 Lives of Bleichenbacher's CAT: New Cache ATtacks on TLS Implementations CaSym: Cache Aware Symbolic Execution for Side Channel Detection and Mitigation PrivKV: Key-Value Data Collection with Local Differential Privacy Postcards from the Post-HTTP World: Amplification of HTTPS Vulnerabilities in the Web Ecosystem New Primitives for Actively-Secure MPC over Rings with Applications to Private Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1