Principal Components Analysis-Based Edge-Directed Image Interpolation

Bing Yang, Zhiyong Gao, Xiaoyun Zhang
{"title":"Principal Components Analysis-Based Edge-Directed Image Interpolation","authors":"Bing Yang, Zhiyong Gao, Xiaoyun Zhang","doi":"10.1109/ICME.2012.153","DOIUrl":null,"url":null,"abstract":"This paper presents an edge-directed, noniterative image interpolation algorithm. In the proposed algorithm, the gradient directions are explicitly estimated with a statistical-based approach. The local dominant gradient directions are obtained by using principal components analysis (PCA) on the four nearest gradients. The angles of the whole gradient plane are divided into four parts, and each gradient direction falls into one part. Then we implement the interpolation with one-dimention (1-D) cubic convolution interpolation perpendicular to the gradient direction. Compared to the state of-the-art interpolation methods, simulation results show that the proposed PCA-based edge-directed interpolation method preserves edges well while maintaining a high PSNR value.","PeriodicalId":273567,"journal":{"name":"2012 IEEE International Conference on Multimedia and Expo","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2012.153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper presents an edge-directed, noniterative image interpolation algorithm. In the proposed algorithm, the gradient directions are explicitly estimated with a statistical-based approach. The local dominant gradient directions are obtained by using principal components analysis (PCA) on the four nearest gradients. The angles of the whole gradient plane are divided into four parts, and each gradient direction falls into one part. Then we implement the interpolation with one-dimention (1-D) cubic convolution interpolation perpendicular to the gradient direction. Compared to the state of-the-art interpolation methods, simulation results show that the proposed PCA-based edge-directed interpolation method preserves edges well while maintaining a high PSNR value.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于主成分分析的边缘图像插值
提出了一种边缘导向的非迭代图像插值算法。在该算法中,采用基于统计的方法显式估计梯度方向。利用主成分分析(PCA)对4个最近的梯度进行分析,得到了局部优势梯度方向。将整个梯度平面的角度划分为四个部分,每个梯度方向落为一个部分。然后用垂直于梯度方向的一维(1-D)三次卷积插值实现插值。仿真结果表明,与现有插值方法相比,基于pca的边缘定向插值方法在保留边缘的同时保持了较高的PSNR值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
View Independent Computer Lip-Reading EEG-based Dominance Level Recognition for Emotion-Enabled Interaction Area and Memory Efficient Architectures for 3D Blu-ray-compliant Multimedia Processors Effective Spatial Data Broadcasting Video Copy Detection Using a Soft Cascade of Multimodal Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1