Construction of QSAR model between the ligand and γ-Aminobutyric acid type A receptor using support vector regression algorithm

Shu Cheng, Yanrui Ding
{"title":"Construction of QSAR model between the ligand and γ-Aminobutyric acid type A receptor using support vector regression algorithm","authors":"Shu Cheng, Yanrui Ding","doi":"10.1109/DCABES50732.2020.00060","DOIUrl":null,"url":null,"abstract":"Quantitative structure-activity relationship (QSAR) plays an important role in the prediction of biological activity based on machine learning. According to the characteristics of the binding interface between ligands and the γ-Aminobutyric acid type A (GABAA) receptor, we used random forest feature selection and support vector regression (SVR) to establish three QSAR models. The best QSAR model features include docking ligand molecular descriptors and ligand-receptor interactions. We also used Leave-One-Out-Cross-Validation (LOOCV) to select the appropriate value C = 2, g = 0.0221. The result of cross validation (QLOO2) is 0.8225, R2 of test set is 0.8326, and MSE is 0.0910. In addition, we found that BELm2, BELe2, Mor08v, Mor29m, refRMS and intermol _ energy are key features, which helps to build QSAR model more accurately.","PeriodicalId":351404,"journal":{"name":"2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCABES50732.2020.00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantitative structure-activity relationship (QSAR) plays an important role in the prediction of biological activity based on machine learning. According to the characteristics of the binding interface between ligands and the γ-Aminobutyric acid type A (GABAA) receptor, we used random forest feature selection and support vector regression (SVR) to establish three QSAR models. The best QSAR model features include docking ligand molecular descriptors and ligand-receptor interactions. We also used Leave-One-Out-Cross-Validation (LOOCV) to select the appropriate value C = 2, g = 0.0221. The result of cross validation (QLOO2) is 0.8225, R2 of test set is 0.8326, and MSE is 0.0910. In addition, we found that BELm2, BELe2, Mor08v, Mor29m, refRMS and intermol _ energy are key features, which helps to build QSAR model more accurately.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用支持向量回归算法构建配体与γ-氨基丁酸A型受体之间的QSAR模型
定量构效关系(Quantitative structure-activity relationship, QSAR)在基于机器学习的生物活性预测中发挥着重要作用。根据配体与γ-氨基丁酸A型(GABAA)受体结合界面的特点,采用随机森林特征选择和支持向量回归(SVR)方法建立了三种QSAR模型。最佳的QSAR模型特征包括对接配体分子描述符和配体-受体相互作用。我们还使用leave - one - out交叉验证(LOOCV)来选择合适的值C = 2, g = 0.0221。交叉验证结果(QLOO2)为0.8225,检验集R2为0.8326,MSE为0.0910。此外,我们发现BELm2、BELe2、Mor08v、Mor29m、refRMS和intermol能量是QSAR模型的关键特征,这有助于更准确地建立QSAR模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visible and infrared image fusion based on visual saliency detection Sponsors DCABES 2020 Computer Vision based Automatic Power Equipment Condition Monitoring and Maintenance: A Brief Review Heuristic Moment Matching based Scenario Generation for Regional Energy Network Planning considering the Stochastic Generation and Demands Some New Attempts to Process Biological Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1