Deep Knowledge Tracing and Engagement with MOOCs

Kritphong Mongkhonvanit, K. Kanopka, David Lang
{"title":"Deep Knowledge Tracing and Engagement with MOOCs","authors":"Kritphong Mongkhonvanit, K. Kanopka, David Lang","doi":"10.1145/3303772.3303830","DOIUrl":null,"url":null,"abstract":"MOOCs and online courses have notoriously high attrition [1]. One challenge is that it can be difficult to tell if students fail to complete because of disinterest or because of course difficulty. Utilizing a Deep Knowledge Tracing framework, we account for student engagement by including course interaction covariates. With these, we find that we can predict a student's next item response with over 88% accuracy. Using these predictions, targeted interventions can be offered to students and targeted improvements can be made to courses. In particular, this approach would allow for gating of content until a student has reasonable likelihood of succeeding.","PeriodicalId":382957,"journal":{"name":"Proceedings of the 9th International Conference on Learning Analytics & Knowledge","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Learning Analytics & Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3303772.3303830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

MOOCs and online courses have notoriously high attrition [1]. One challenge is that it can be difficult to tell if students fail to complete because of disinterest or because of course difficulty. Utilizing a Deep Knowledge Tracing framework, we account for student engagement by including course interaction covariates. With these, we find that we can predict a student's next item response with over 88% accuracy. Using these predictions, targeted interventions can be offered to students and targeted improvements can be made to courses. In particular, this approach would allow for gating of content until a student has reasonable likelihood of succeeding.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度知识追踪与mooc参与
mooc和在线课程的流失率非常高[1]。一个挑战是,很难判断学生没有完成课程是因为不感兴趣还是因为课程困难。利用深度知识跟踪框架,我们通过包括课程交互协变量来解释学生参与度。有了这些,我们发现我们可以预测学生对下一个项目的反应,准确率超过88%。利用这些预测,可以向学生提供有针对性的干预措施,并对课程进行有针对性的改进。特别是,这种方法将允许对内容进行限制,直到学生有合理的成功可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DiAd: Domain Adaptation for Learning at Scale Top Concept Networks of Professional Education Reflections Exploring the Subtleties of Agency and Indirect Control in Digital Learning Games Exploring Learner Engagement Patterns in Teach-Outs Using Topic, Sentiment and On-topicness to Reflect on Pedagogy An Analysis of Student Representation, Representative Features and Classification Algorithms to Predict Degree Dropout
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1