Recurrent neural network for faulty data identification in smart grid

A. Darwin Jose Raju, S. Solai Manohar
{"title":"Recurrent neural network for faulty data identification in smart grid","authors":"A. Darwin Jose Raju, S. Solai Manohar","doi":"10.1109/ICONRAEECE.2011.6129795","DOIUrl":null,"url":null,"abstract":"The accuracy of the control data from different sensors in a system is evaluated by embedding a recurrent neural network with layer feedback for each sensor. The accuracy of the sensor output is calculated by comparing the values from neighboring sensor output. Here non-linear sensor model using Hammerstein-Wiener was used and the amount of sensor data fault is estimated by using kalman filter. This value will be considered as an actual output in case of sensor failure. The performance is analyzed with and without extended kalman filter learning algorithm by introducing a step size fault.","PeriodicalId":305797,"journal":{"name":"2011 INTERNATIONAL CONFERENCE ON RECENT ADVANCEMENTS IN ELECTRICAL, ELECTRONICS AND CONTROL ENGINEERING","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 INTERNATIONAL CONFERENCE ON RECENT ADVANCEMENTS IN ELECTRICAL, ELECTRONICS AND CONTROL ENGINEERING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONRAEECE.2011.6129795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The accuracy of the control data from different sensors in a system is evaluated by embedding a recurrent neural network with layer feedback for each sensor. The accuracy of the sensor output is calculated by comparing the values from neighboring sensor output. Here non-linear sensor model using Hammerstein-Wiener was used and the amount of sensor data fault is estimated by using kalman filter. This value will be considered as an actual output in case of sensor failure. The performance is analyzed with and without extended kalman filter learning algorithm by introducing a step size fault.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于递归神经网络的智能电网故障数据识别
通过对每个传感器嵌入具有层反馈的递归神经网络来评估系统中不同传感器控制数据的精度。通过比较邻近传感器的输出值来计算传感器输出的精度。本文采用Hammerstein-Wiener非线性传感器模型,利用卡尔曼滤波估计传感器数据的故障量。在传感器故障的情况下,该值将被视为实际输出。通过引入步长故障,分析了采用扩展卡尔曼滤波学习算法和不采用扩展卡尔曼滤波学习算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Iris recognition using Ridgelet transform Analog control scheme for Cascaded Multilevel Inverters based on multiple carrier PWM technique Energy balance model based fuzzy controller for combustion of utility boiler Design of PID power system stabilizer using GA for SMIB system: Linear and non-linear approach Dielectric properties of polycarbonate coated natural fabric Grewia tilifolia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1