Integrating spatial & spectral information for change detection in hyperspectral imagery

Karmon Vongsy, M. Mendenhall
{"title":"Integrating spatial & spectral information for change detection in hyperspectral imagery","authors":"Karmon Vongsy, M. Mendenhall","doi":"10.1109/WHISPERS.2016.8071703","DOIUrl":null,"url":null,"abstract":"Change detection (CD) is an important topic in the remote sensing community. Although many CD works exist using spatial information or spectral information only, few works have incorporated both in the CD process. We propose a fused spatial-spectral feature vector for use in a maximum likelihood correlation coefficient (MLCC)-based change detector where the resulting test statistic provides the ability to label changes as departures or arrivals relative to the reference image. Results show that incorporating both spatial and spectral information has an advantage over either one independently. Additionally, incorporating spatial and spectral information in the CD process adds some robustness in the presence of misregistration errors.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Change detection (CD) is an important topic in the remote sensing community. Although many CD works exist using spatial information or spectral information only, few works have incorporated both in the CD process. We propose a fused spatial-spectral feature vector for use in a maximum likelihood correlation coefficient (MLCC)-based change detector where the resulting test statistic provides the ability to label changes as departures or arrivals relative to the reference image. Results show that incorporating both spatial and spectral information has an advantage over either one independently. Additionally, incorporating spatial and spectral information in the CD process adds some robustness in the presence of misregistration errors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于空间与光谱信息的高光谱图像变化检测
变化检测是遥感领域的一个重要课题。虽然许多CD作品只使用空间信息或光谱信息,但很少有作品在CD过程中同时使用这两种信息。我们提出了一种融合的空间光谱特征向量,用于基于最大似然相关系数(MLCC)的变化检测器,其中产生的测试统计量提供了相对于参考图像将变化标记为偏离或到达的能力。结果表明,将空间信息和光谱信息相结合比单独使用任何一种信息都有优势。此外,在CD过程中加入空间和光谱信息增加了在存在误配误差时的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hyperspectral and color-infrared imaging from ultralight aircraft: Potential to recognize tree species in urban environments Mapping land covers of brussels capital region using spatially enhanced hyperspectral images Morpho-spectral objects classification by hyperspectral airborne imagery Land-cover monitoring using time-series hyperspectral data via fractional-order darwinian particle swarm optimization segmentation Nonnegative CP decomposition of multiangle hyperspectral data: A case study on CRISM observations of Martian ICY surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1