Intelligent Traffic Signal Control System using Deep Q-network

Hyunjin Joo, Y. Lim
{"title":"Intelligent Traffic Signal Control System using Deep Q-network","authors":"Hyunjin Joo, Y. Lim","doi":"10.1109/ECICE52819.2021.9645679","DOIUrl":null,"url":null,"abstract":"Traffic congestion is one of the common urban problems caused by increased traffic. Traffic congestion accelerates environmental pollution by wasting drivers’ time and fuel and generating more fumes. Therefore, traffic congestion is an important issue to be solved. Currently, as technologies develop, a smart city that efficiently manages data information collected is in the spotlight. The smart transportation system utilizes the infrastructure and network built in the smart city to analyze traffic flow and control traffic in real-time. Accordingly, traffic congestion can be effectively alleviated. This paper proposes a smart traffic signal control system using a Deep Q-network (DQN), a type of reinforcement learning. The proposed algorithm distributes the optimal green signal time by collecting and learning information about the intersection situation. The proposed algorithm is designed to improve the performance in terms of throughput. As a result, the number of waiting vehicles also decreased. To validate the algorithm, we evaluate the performance in various traffic scenarios.","PeriodicalId":176225,"journal":{"name":"2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECICE52819.2021.9645679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traffic congestion is one of the common urban problems caused by increased traffic. Traffic congestion accelerates environmental pollution by wasting drivers’ time and fuel and generating more fumes. Therefore, traffic congestion is an important issue to be solved. Currently, as technologies develop, a smart city that efficiently manages data information collected is in the spotlight. The smart transportation system utilizes the infrastructure and network built in the smart city to analyze traffic flow and control traffic in real-time. Accordingly, traffic congestion can be effectively alleviated. This paper proposes a smart traffic signal control system using a Deep Q-network (DQN), a type of reinforcement learning. The proposed algorithm distributes the optimal green signal time by collecting and learning information about the intersection situation. The proposed algorithm is designed to improve the performance in terms of throughput. As a result, the number of waiting vehicles also decreased. To validate the algorithm, we evaluate the performance in various traffic scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度q网络的智能交通信号控制系统
交通拥堵是由交通量增加引起的常见城市问题之一。交通拥堵通过浪费司机的时间和燃料以及产生更多的烟雾来加速环境污染。因此,交通拥堵是一个需要解决的重要问题。目前,随着技术的发展,高效管理收集到的数据信息的智慧城市备受关注。智能交通系统利用智慧城市的基础设施和网络,对交通流量进行实时分析和控制。因此,可以有效地缓解交通拥堵。本文提出了一种基于深度q网络(Deep Q-network, DQN)的智能交通信号控制系统。该算法通过收集和学习交叉口情况信息来分配最优绿灯时间。提出的算法旨在提高吞吐量方面的性能。因此,等候车辆的数量也减少了。为了验证该算法,我们评估了各种交通场景下的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Demonstration of 128QAM-OFDM Encoded Terahertz Signals over 20-km SMF Evaluation of Learning Effectiveness Using Mobile Communication and Reality Technology to Assist Teaching: A Case of Island Ecological Teaching [ECICE 2021 Front matter] Application of Time-series Smoothed Excitation CNN Model Study on Humidity Status Fuzzy Estimation of Low-power PEMFC Stack Based on the Softsensing Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1