Radial basis function neural network for prediction of cardiac arrhythmias based on heart rate time series

J. P. Kelwade, S. Salankar
{"title":"Radial basis function neural network for prediction of cardiac arrhythmias based on heart rate time series","authors":"J. P. Kelwade, S. Salankar","doi":"10.1109/CMI.2016.7413789","DOIUrl":null,"url":null,"abstract":"This paper proposes the system to predict eight cardiac arrhythmias using the radial basis function neural network (RBFN). In our study of neural network for heart rate time series, the prediction of Left bundle branch block (LBBB), Atrial fibrillation (AFIB), Normal Sinus Rhythm (NSR), Right bundle branch block (RBBB), Sinus bradycardia (SBR), Atrial flutter (AFL), Premature Ventricular Contraction (PVC), and Second degree block (BII) is done using proposed algorithm. The heart rate time series are obtained from MIT-BIH arrhythmia database. The linear and nonlinear features are detected from heart rate time series of each arrhythmia. The 70% of each datasets of features are used to train RBFN and remaining 30% of the datasets of features are used to predict eight cardiac diseases. This approach gives overall prediction accuracy of 96.33% as compared to the methods reported in existing literature.","PeriodicalId":244262,"journal":{"name":"2016 IEEE First International Conference on Control, Measurement and Instrumentation (CMI)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE First International Conference on Control, Measurement and Instrumentation (CMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMI.2016.7413789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

This paper proposes the system to predict eight cardiac arrhythmias using the radial basis function neural network (RBFN). In our study of neural network for heart rate time series, the prediction of Left bundle branch block (LBBB), Atrial fibrillation (AFIB), Normal Sinus Rhythm (NSR), Right bundle branch block (RBBB), Sinus bradycardia (SBR), Atrial flutter (AFL), Premature Ventricular Contraction (PVC), and Second degree block (BII) is done using proposed algorithm. The heart rate time series are obtained from MIT-BIH arrhythmia database. The linear and nonlinear features are detected from heart rate time series of each arrhythmia. The 70% of each datasets of features are used to train RBFN and remaining 30% of the datasets of features are used to predict eight cardiac diseases. This approach gives overall prediction accuracy of 96.33% as compared to the methods reported in existing literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于心率时间序列的径向基函数神经网络预测心律失常
本文提出了一种基于径向基函数神经网络(RBFN)的心律失常预测系统。在心率时间序列的神经网络研究中,采用该算法预测左束支传导阻滞(LBBB)、心房颤动(AFIB)、正常窦性心律(NSR)、右束支传导阻滞(RBBB)、窦性心动过缓(SBR)、心房扑动(AFL)、室性早搏(PVC)和二度传导阻滞(BII)。心率时间序列来源于MIT-BIH心律失常数据库。从每一种心律失常的心率时间序列中检测出线性和非线性特征。每个特征数据集的70%用于训练RBFN,其余30%的特征数据集用于预测8种心脏病。与现有文献报道的方法相比,该方法的总体预测准确率为96.33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Guaranteed performance PID controller for UAV pitch control Optimal PID controller design of an inverted pendulum dynamics: A hybrid pole-placement & firefly algorithm approach Performance comparison of optimized controller tuning techniques for voltage stability Robust load frequency control in multi-area power system: An LMI approach Level control of two tank system by fractional order integral state feedback controller tuned by PSO with experimental validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1