Nitrogen oxide emission modeling for boiler combustion using accurate online support vector regression

Jianxin Zhou, Yinxin Ji, Zongliang Qiao, Fengqi Si, Zhigao Xu
{"title":"Nitrogen oxide emission modeling for boiler combustion using accurate online support vector regression","authors":"Jianxin Zhou, Yinxin Ji, Zongliang Qiao, Fengqi Si, Zhigao Xu","doi":"10.1109/FSKD.2013.6816339","DOIUrl":null,"url":null,"abstract":"Using the data of boiler combustion, an accurate online support vector regression (AOSVR) model of the Nitrogen Oxide (NOx) emission property is built. After the training and the testing, the result shows that AOSVR is a good tool for modeling with small sample data, compared with the method of SVR and artificial neural network (ANN). The model can estimate the NOx emission accurately under different conditions when the load or other parameters changes. The accuracy of this model can also meets the demand of the combustion optimization. The result shows that this new model has a good learning efficiency and prediction accuracy because the algorithm can update the parameters of the model by itself as time and other parameters change.","PeriodicalId":368964,"journal":{"name":"2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2013.6816339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Using the data of boiler combustion, an accurate online support vector regression (AOSVR) model of the Nitrogen Oxide (NOx) emission property is built. After the training and the testing, the result shows that AOSVR is a good tool for modeling with small sample data, compared with the method of SVR and artificial neural network (ANN). The model can estimate the NOx emission accurately under different conditions when the load or other parameters changes. The accuracy of this model can also meets the demand of the combustion optimization. The result shows that this new model has a good learning efficiency and prediction accuracy because the algorithm can update the parameters of the model by itself as time and other parameters change.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于精确在线支持向量回归的锅炉燃烧氮氧化物排放建模
利用锅炉燃烧数据,建立了准确的NOx排放特性在线支持向量回归(AOSVR)模型。经过训练和测试,结果表明,与SVR和人工神经网络(ANN)方法相比,AOSVR是一个很好的小样本数据建模工具。该模型可以在负荷或其他参数发生变化时,准确估算出不同工况下的NOx排放量。该模型的精度也能满足燃烧优化的要求。结果表明,该算法可以随着时间和其他参数的变化自行更新模型参数,具有良好的学习效率和预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised clustering with the Octave Fuzzy Logic Toolkit Application of adaptive neuro-fuzzy inference system for physical habitat simulation Fuzzy equivalence relation clustering with transitive closure, transitive opening and the optimal transitive approximation A local domain adaptation feature extraction method A real-time algorithm for fixed-length short data compression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1