Joint Span Segmentation and Rhetorical Role Labeling with Data Augmentation for Legal Documents

Santosh T.Y.S.S, Philipp Bock, Matthias Grabmair
{"title":"Joint Span Segmentation and Rhetorical Role Labeling with Data Augmentation for Legal Documents","authors":"Santosh T.Y.S.S, Philipp Bock, Matthias Grabmair","doi":"10.48550/arXiv.2302.06448","DOIUrl":null,"url":null,"abstract":"Segmentation and Rhetorical Role Labeling of legal judgements play a crucial role in retrieval and adjacent tasks, including case summarization, semantic search, argument mining etc. Previous approaches have formulated this task either as independent classification or sequence labeling of sentences. In this work, we reformulate the task at span level as identifying spans of multiple consecutive sentences that share the same rhetorical role label to be assigned via classification. We employ semi-Markov Conditional Random Fields (CRF) to jointly learn span segmentation and span label assignment. We further explore three data augmentation strategies to mitigate the data scarcity in the specialized domain of law where individual documents tend to be very long and annotation cost is high. Our experiments demonstrate improvement of span-level prediction metrics with a semi-Markov CRF model over a CRF baseline. This benefit is contingent on the presence of multi sentence spans in the document.","PeriodicalId":126309,"journal":{"name":"European Conference on Information Retrieval","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Conference on Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.06448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Segmentation and Rhetorical Role Labeling of legal judgements play a crucial role in retrieval and adjacent tasks, including case summarization, semantic search, argument mining etc. Previous approaches have formulated this task either as independent classification or sequence labeling of sentences. In this work, we reformulate the task at span level as identifying spans of multiple consecutive sentences that share the same rhetorical role label to be assigned via classification. We employ semi-Markov Conditional Random Fields (CRF) to jointly learn span segmentation and span label assignment. We further explore three data augmentation strategies to mitigate the data scarcity in the specialized domain of law where individual documents tend to be very long and annotation cost is high. Our experiments demonstrate improvement of span-level prediction metrics with a semi-Markov CRF model over a CRF baseline. This benefit is contingent on the presence of multi sentence spans in the document.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数据扩充的法律文件联合跨度分割与修辞角色标注
法律判决书的分词和修辞角色标注在案件总结、语义搜索、论据挖掘等检索和相关任务中起着至关重要的作用。以前的方法将这个任务表述为独立分类或句子的序列标记。在这项工作中,我们在跨度层面将任务重新表述为识别多个连续句子的跨度,这些句子具有相同的修辞角色标签,并通过分类分配。我们采用半马尔可夫条件随机场(CRF)来联合学习跨度分割和跨度标签分配。我们进一步探讨了三种数据增强策略,以缓解法律专业领域中单个文档往往很长且注释成本高的数据稀缺性。我们的实验证明了半马尔可夫CRF模型在CRF基线上的跨度级预测指标的改进。这种好处取决于文档中是否存在多句子跨度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experiments in News Bias Detection with Pre-trained Neural Transformers Is Interpretable Machine Learning Effective at Feature Selection for Neural Learning-to-Rank? Two-Step SPLADE: Simple, Efficient and Effective Approximation of SPLADE Exploring the Nexus Between Retrievability and Query Generation Strategies Countering Mainstream Bias via End-to-End Adaptive Local Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1